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Model
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models that capture output 

dynamics

Á Controlling production 

systems by modulating the 

input arrival streams

Research Questions

Data-Driven Modelling and Control



Output Dynamics can be represented by

mean, variance, distribution, and auto -correlation
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Figure 12. Effect of interstation buffer capacity on the variability of N(T), T=100.  Three 

station production line with kanban control. 

7.2.2 Time to Produce a Given Order 

In addition to the number of parts produced in a given time interval, the 

time to produce a given number of parts is also of interest.  For example, 

determining the variability of the time to produce a number of parts allows 

one to set due-dates according to a desired level of service.  It is possible to 

determine the due-time performance from the distribution of N(t) directly by 

determining the probability of completing an order before its due-date.  

However, determining the distribution and variance of the time to produce n 

parts is not straightforward.  In this section, we present a method that can be 

used to determine the distribution, mean, and variance of the time to produce 

a fixed lot.  

The relationship between the processes { N(t), n=0, 1, 2,¥}  and {Tn, t ³ 0}  

yield 

[ ] [ ]tTPntNP n >=-£ 1)(  (50) 

Furthermore Tn =  t  if and only if N(t) = n and N(t-1) =  n-1.  That is if the 

time to produce, say, 5 parts is 10 time units, then it means that 4 parts have 

been produced in [0,9) and the 10
th
 part has been produced during [9, 10).  

Then 
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In equation (52), since t takes infinite number of different values, the 

calculations can be terminated at t= t  where P[Tn= t ]<e <  P[Tn= t- 1] where e  

is the tolerance level.  In other words, the upper tail of the distribution of Tn 

is truncated at t= t   and then the resulting distribution is normalized. 

If only the mean and variance of Tn is to be determined, then we can 

directly work with equation (50).  Equation  (50) can be rewritten as 
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Then the expectation and variance of the time to produce n parts, E[Tn] and 

Var[Tn] can be evaluated from the distribution of N(t) as 
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Similarly, 

Var T E T E Tn n n[ ] [ ] ( [ ])= -2 2  (55) 
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The above equations can be evaluated numerically after further simplifying 

them by noting that P[N(t)=m] = 0 if t<m, i.e., it is not possible to produce 

more than t parts in [0,t), and terminating the summation at t= t  where   

P[N(t )]<e <P[N( t- 1)].   

 Figure 13 gives the distribution of Tn for a three-station line with 

pi=0.1, r i=0.9, Ni=5, i=1, 2, 3.   Initially all the stations are up and there is 

one part in each buffer.  In this example, there are 288 states in the state 

space and the number of non-zero elements in the state-transition matrix is 

1948. By using the distribution of Tn, the cycle time distribution conditioned 

on the initial state of the production system can also be determined easily.   
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Output Dynamics

Automotive Assembly Line

Frequency distribution of the inter -departure time and sample 

autocorrelation of inter -departure times for a car assembly line

(Tan and Lagershausen 2017)



Output Dynamics

Semiconductor Manufacturing

(Schömig and Mittler , 1995)

Sample autocorrelation of cycle times for two fabs



Production System vs Model

òMathematical Twinó

Production System Departure

Model Departure



Output Dynamics

can be captured with Markov Arrival Processes (MAPs )

Analysis of MAPs

Methods to fit 

phase -type distributions

moments and 

autocorrelations

Lakatos et al. ( 2013 ) 

He (2014 )

Buchholz et al. ( 2014 )

Bodrag et. al. ( 2008 )

HorvaӢth (2013 )

Okamura and Dohi (2016 ) 



Inter -Departure Time Dynamics 

Same Distribution : Negative, 0, Positive autocorrelation 

cv=0.6

Arrival: MAP Service: Erlang (4)
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Figure 2 The state t ransit ion diagram of the process { X
( 3)

d (t), t Ó0} associated with three departures from a

two stat ion product ion line with exponent ial servers and a ýnite buffer wit h a capacity of 2
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Table 2 The Indicator M at rix Gd for the inter-departure t ime of a two stat ion product ion line with

exponent ial servers and a ýnite buffer

(1, 0) (1, 1) (1, 2) (1,3) (B ,3)

(1,0) 0 0 0 0 0

(1,1) 1 0 0 0 0

(1,2) 0 1 0 0 0

(1,3) 0 0 1 0 0

(B, 3) 0 0 0 1 0

Table 3 M at rix Ý for inter-departure t ime of a two stat ion product ion line with exponent ial servers and a

ýnite buffer

(1,0) (1, 1) (1,2) (1,3) (B , 3)

(1, 0) 0 0 0 0 0

(1, 1) Õ2

Õ1

Õ2

Õ1 +Õ2

Õ1Õ2

(Õ1+ Õ2 )2

Õ2
1Õ2

(Õ1+ Õ2 )3

Õ3
1

(Õ1+ Õ2 )3

(1, 2) 0 Õ2

Õ1 +Õ2

Õ1Õ2

(Õ1+ Õ2 )2

Õ2
1Õ2

(Õ1+ Õ2 )3

Õ3
1

(Õ1+ Õ2 )3

(1, 3) 0 0 Õ2

Õ1+ Õ2

Õ1Õ2

(Õ1+ Õ2 )2

Õ2
1

(Õ1+ Õ2 )2

(B , 3) 0 0 0 Õ2

Õ1+ Õ2

Õ1

Õ1+Õ2

Themean and thevarianceof the inter-departure t imeand thecovarianceof the inter-departure

t imes can be writ ten in closed form by using the expressions for matricesūandÝ. The closed-form

expressions for the special caseÕ1 = Õ2 = Õare given below:

E (T ) =
(M + 3)

Õ(M + 2)
, (29)

Var (T ) =
(M 2 + 6M + 7)

Õ2(M + 2)2
. (30)

The inter -departure time distribution 

can be determined analytically



The inter -departure time distribution 

can be determined analytically

Start with a CTMC 

representation of a 

Production System

Identify events that 

lead to a departure

First -passage time 

analysis yields the 

distribution, mean, and 

variance of the inter -

departure time

(Lagershausen and Tan 2015)
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Departure Autocorrelation

for Production Systems can be determined analytically by

Extending this approach to analyze 

sequence of k inter -departure times and determining

the variance of the time to produce k products



Use the variance of the time k parts depart to 

determine the k-lag covariance

Calculate Determine

Departure Autocorrelation

for Production Systems can be determined analytically



Extending this approach to analyze 

sequence of k inter -departure times

Departure Autocorrelation

for Production Systems can be determined analytically by



Departure Autocorrelation 

can be determined iteratively from the rate matrix

(Tan and Lagershausen 2017)



Example: Two-station Production Line

Exponential Processing Time and a Finite Buffer
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Two- Station Production Line with 

Coxian Processing Time and a Finite Buffer



Example: Multi -station Production Lines

with Exponential Servers and Finite Buffers



Example: Closed Four -Station System with Different 

Service Time Coefficient of Variations and Number of Pallets
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Exp.1:

An Infinite Buffer Queue with 

Correlated Arrival and Service Processes 

ServiceArrival

ɚ ɛ

Correlated Arrival Deterministic Service MAP/D/1

Correlated Arrival Renewal Service MAP/PH/1

Renewal Arrival Correlated Service PH/MAP/1

(Dizbin , 2016)



Structural Results for Processes with 

Positive and Negative Autocorrelations

Á Positive Autocorrelation

increases the probability of having 

Higher Queue Lengths 

Á Negative Autocorrelation 

increases the probability of having 

Lower Queue Lengths 

Á A process with negative 

autocorrelation stochastically 

dominates the same process with 

positive autocorrelation 

Á Expected number of customers 

and expected waiting t ime has an 

increasing convex order w.r.t

autocorrelation

MAP/D/1

PH/MAP/1



Exp. 2:

Base Stock System

ɚ

MAP

ɛ

MAP

Production

Demand

S

one, two -moment and 

renewal approximations

Á Exponential

Á Coxian (C2:b)

Á Phase -type (PH)

performance measures

Á Base Stock Level

Á Total Cost

Á Expected Backlog

Á Expected Inventory



Base Stock Model with a 

Negatively Autocorrelated Process


