# Analysis of Flexible Serial Lines with Setups

Cong Zhao\*, Jingshan Li\* and Ningjian Huang\*\*

\*Department of Industrial and Systems Engineering
University of Wisconsin Madison

\*\*Manufacturing Systems Research Lab, GM Research & Development Center



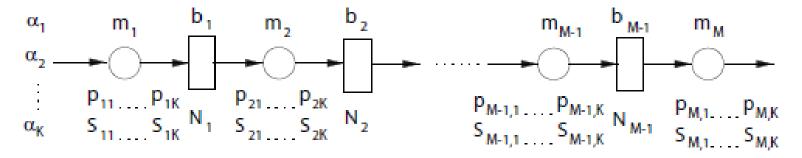


### Outline

- System Modeling
- Single Machine Line
- Two-Machine Line
- Long Serial Line
- Bottleneck Analysis
- Case study
- Summary

# System Modeling

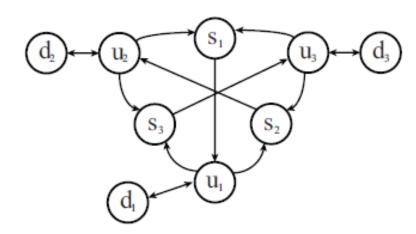
Serial Production Line with M machines and K products



- Incoming sequence
  - product type: discrete distribution with probability  $\alpha_j$  to be type j
  - $\sum_{j=1}^K \alpha_j = 1$
- Bernoulli reliability model
  - Parameters  $p_{ij}$ , for machine i product j
- Bernoulli setup model
  - Setup success with probability  $s_{ij}$

# Single Machine

- A single machine with K=3 products.
- State transition highlights
  - Failed machine must return to the same type up state.
  - Product changeover must go through setup.
  - Self loops are ignored.



$$\pi_{u_{1j}} = \frac{\alpha_{j}}{1 + \sum_{l=1}^{K} \frac{\alpha_{l}(1 - \alpha_{l})}{\frac{s_{1l}}{\alpha_{j}}(1 - \alpha_{j})}} + \alpha_{l}^{2} \left(\frac{1}{p_{1l}} - 1\right)}$$

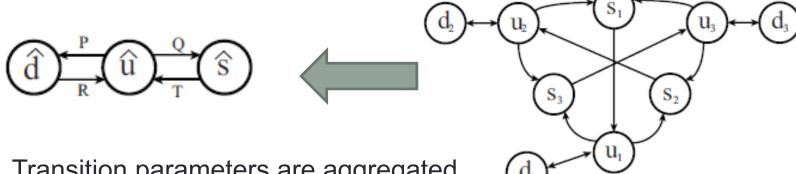
$$\pi_{s_{1j}} = \frac{1 + \sum_{l=1}^{K} \frac{\alpha_{l}(1 - \alpha_{l})}{\frac{s_{1l}}{s_{1l}}} + \alpha_{l}^{2} \left(\frac{1}{p_{1l}} - 1\right)}{\alpha_{j}^{2} \left(\frac{1}{p_{1j}} - 1\right)}$$

$$\pi_{d_{1j}} = \frac{\alpha_{j}^{K} \left(\frac{1}{p_{1j}} - 1\right)}{1 + \sum_{l=1}^{K} \frac{\alpha_{l}(1 - \alpha_{l})}{\frac{s_{1l}}{s_{1l}}} + \alpha_{l}^{2} \left(\frac{1}{p_{1l}} - 1\right)}$$

Steady state distribution

# Single Machine State Aggregation

- Scale up the analytical method for long line
  - Group into down, up and setup states



Transition parameters are aggregated

$$P = \frac{\sum_{j} (1 - p_{1j}) \alpha_{j} \pi_{u_{1j}}}{\sum_{j} \pi_{u_{1j}}} \qquad R = \frac{\sum_{j} p_{1j} \pi_{d_{1j}}}{\sum_{j} \pi_{d_{1j}}}$$
 
$$Q = \frac{\sum_{j} (1 - \alpha_{j}) \pi_{u_{1j}}}{\sum_{j} \pi_{u_{1j}}} \qquad T = \frac{\sum_{j} s_{ij} \pi_{s_{1j}}}{\sum_{j} \pi_{s_{1j}}}$$

# Single Machine State Aggregation

Parameter aggregation

$$P = \frac{\sum_{j} (1 - p_{1j}) \alpha_{j} \pi_{u_{1j}}}{\sum_{j} \pi_{u_{1j}}} = \sum_{j} (1 - p_{1j}) \alpha_{j}^{2},$$

$$R = \frac{\sum_{j} p_{1j} \pi_{d_{1j}}}{\sum_{j} \pi_{d_{1j}}} = \frac{P}{\sum_{j} \alpha_{j}^{2} (1/p_{1j} - 1)},$$

$$Q = \frac{\sum_{j} (1 - \alpha_{j}) \pi_{u_{1j}}}{\sum_{j} \pi_{u_{1j}}} = \sum_{j} (1 - \alpha_{j}) \alpha_{j},$$

$$T = \frac{\sum_{j} s_{ij} \pi_{s_{1j}}}{\sum_{j} \pi_{s_{1j}}} = \frac{Q}{\sum_{j} (1 - \alpha_{j}) \alpha_{j}/s_{ij}}.$$

Steady states are computed and matched with original machine.

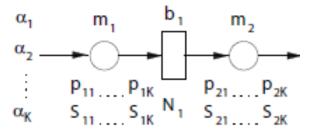
$$\pi_{\hat{u}} = \frac{1}{P/R + 1 + Q/T}, \qquad \pi_{\hat{s}} = \frac{Q/T}{P/R + 1 + Q/T}, \qquad \pi_{\hat{d}} = \frac{P/R}{P/R + 1 + Q/T}.$$

Throughput for product type j

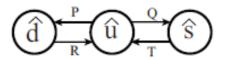
• 
$$\pi_{u_{1j}} = \alpha_j \pi_{\widehat{u}}$$

#### **Two-Machine Line**

- Full state space size:  $9K^2(N^K + 1)$
- Aggregated state space size: 9(N + 1)



For each of the machines



• Performance evaluation (subscripts P, R, Q, T are machine indexes for  $m_1$  and  $m_2$ ):

$$PR = \Phi_{p}(P_{1}, P_{2}, R_{1}, R_{2}, Q_{1}, Q_{2}, T_{1}, T_{2}, N) = \pi_{N,uu} + \sum_{k=0}^{N-1} (\pi_{k,us} + \pi_{k,ud} + \pi_{k,uu})$$

$$= \sum_{k=1}^{N} (\pi_{k,su} + \pi_{k,du} + \pi_{k,uu}),$$

$$BL = \Phi_{b}(P_{1}, P_{2}, R_{1}, R_{2}, Q_{1}, Q_{2}, T_{1}, T_{2}, N) = \pi_{N,us} + \pi_{N,ud},$$

$$ST = \Phi_{s}(P_{1}, P_{2}, R_{1}, R_{2}, Q_{1}, Q_{2}, T_{1}, T_{2}, N) = \pi_{0,uu} + \pi_{0,su} + \pi_{0,du},$$

$$WIP = \Phi_{w}(P_{1}, P_{2}, R_{1}, R_{2}, Q_{1}, Q_{2}, T_{1}, T_{2}, N) = \sum_{k} \sum_{m_{1}} \sum_{m_{2}} k \cdot \pi_{k,m_{1}m_{2}}.$$

# Long Serial Line

• Use blockage and starvation information to adjust production failure parameters  $P_i$  and  $R_i$ .

#### Procedure 1

$$bl_{i}^{b}(n+1) = \Phi_{b}(P_{i}^{f}(n), P_{i+1}^{b}(n+1), R_{i}^{f}(n), R_{i+1}^{b}(n+1), Q_{i}, Q_{i+1}, T_{i}, T_{i+1}, N_{i}),$$

$$st_{i}^{f}(n+1) = \Phi_{s}(P_{i-1}^{f}(n), P_{i}^{b}(n+1), R_{i-1}^{f}(n), R_{i}^{b}(n+1), Q_{i-1}, Q_{i}, T_{i-1}, T_{i}, N_{i-1}),$$

$$P_{i}^{b}(n+1) = P_{i} + R_{i}bl_{i}^{b}(n+1), \quad R_{i}^{b}(n+1) = R_{i}(1 - bl_{i}^{b}(n+1)), \quad i = 1, \dots, M,$$

$$P_{i}^{f}(n+1) = P_{i} + R_{i}st_{i}^{f}(n+1), \quad R_{i}^{f}(n+1) = R_{i}(1 - st_{i}^{f}(n+1)), \quad i = 1, \dots, M$$

with initial conditions

$$P_i^f(0) = P_i, \quad R_i^f(0) = R_i, \quad i = 1, \dots, M$$

and boundary conditions

$$P_1^f(n) = P_1, \quad P_M^b(n) = P_M, \quad R_1^f(n) = R_1, \quad R_M^b(n) = R_M, \quad n = 0, 1, 2, \dots$$

The algorithm converges.

### **Accuracy Evaluation**

10,000 production lines are randomly generated.

$$M \in \{2, ..., 10\}, K \in \{2, ..., 5\},\$$
  
 $p_{ij} \in (0.7, 0.99), i = 1, ..., M, j = 1, ..., K,\$   
 $s_{ij} \in (0.5, 0.99), i = 1, ..., M, j = 1, ..., K,\$   
 $N_i \in \{5, 6, ..., 15\}, i = 1, ..., M - 1,\$   
 $\alpha_j \in (0, 1), j = 1, ..., K, s.t. \sum_{j=1}^{K} \alpha_j = 1.$ 

- Computation results are compared with simulation results.
  - Production rate: avg err 2.90%
  - WIP: avg err 9.40%
  - BL,ST: avg err 0.02

$$\begin{split} \delta_{PR} &= \frac{|PR^{sim} - PR^{model}|}{PR^{sim}} \cdot 100\%, \\ \delta_{WIP_i} &= \frac{|WIP_i^{sim} - WIP_i^{model}|}{N_i} \cdot 100\%, \\ \delta_{BL_i} &= |BL_i^{sim} - BL_i^{model}|, \\ \delta_{ST_i} &= |ST_i^{sim} - ST_i^{model}|, \end{split}$$

#### Bottleneck Product Type in Setup Time

 Focus on one machine, find the most severe setup bottleneck type.

DEFINITION 1. Under assumption 1-9, product type j on machine  $m_i$  is the setup bottleneck product type if

$$\left| \frac{\partial PR}{\partial T_{s_{ij}}} \right| > \left| \frac{\partial PR}{\partial T_{s_{il}}} \right|, \quad \forall l \neq j, l, j \in \{1, \dots, K\},$$

where  $T_{s_{ij}} = \frac{1}{s_{ij}}$  is the setup time.

Indicator

$$Q = \frac{\sum_{j} (1 - \alpha_{j}) \pi_{u_{1j}}}{\sum_{j} \pi_{u_{1j}}} = \sum_{j} (1 - \alpha_{j}) \alpha_{j},$$

$$T = \frac{\sum_{j} s_{ij} \pi_{s_{1j}}}{\sum_{j} \pi_{s_{1j}}} = \frac{Q}{\sum_{j} (1 - \alpha_{j}) \alpha_{j} / s_{ij}}$$

$$\pi_{\hat{u}} = \frac{1}{P/R + 1 + Q/T}$$

$$\tau_{\hat{u}} = \frac{1}{P/R + 1 + Q/T}$$

**PROPOSITION** 3. Under assumptions 1-9, for machine  $m_i$ , the setup bottleneck product type j is the one with the largest value of  $(1 - \alpha_j)\alpha_j$ , or equivalently, the smallest value of  $|\alpha_j - 0.5|$ .

#### Selectivity of Setup and Failure Improvement

- On a given machine
  - focus on setup time reduction or downtime reduction?

DEFINITION 2. Under assumptions 1-9, for machine  $m_i$ , setup time reduction has higher selectivity in continuous improvement if

$$\sum_{i=1}^{K} \left| \frac{\partial PR}{\partial T_{s_{ij}}} \right| > \sum_{i=1}^{K} \left| \frac{\partial PR}{\partial T_{d_{ij}}} \right|, \quad \forall i \in \{1, \dots, M\}.$$

Recall

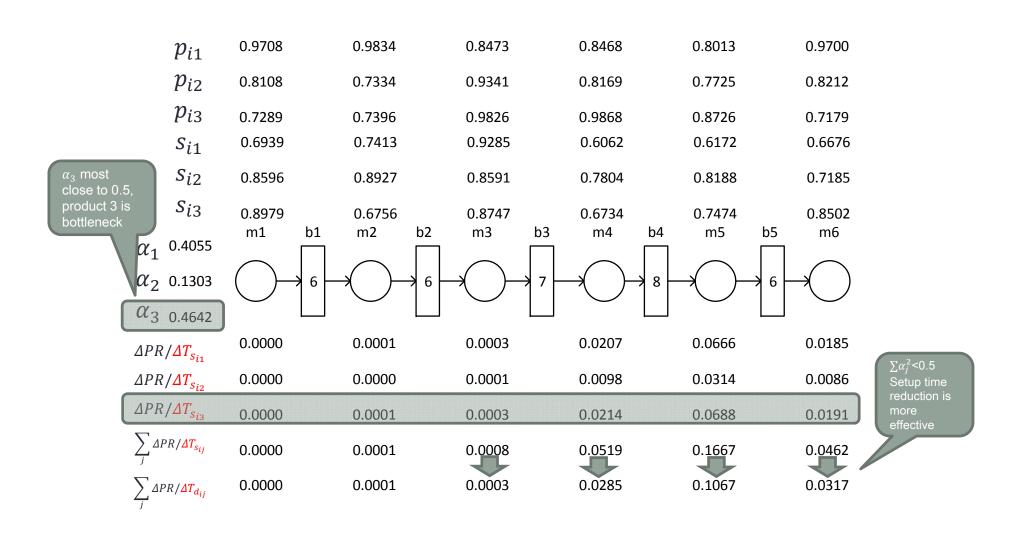
$$\pi_{u_{1j}} = \frac{\alpha_{j}}{1 + \sum_{l=1}^{K} \frac{\alpha_{l}(1 - \alpha_{l})}{s_{1l}} + \alpha_{l}^{2} \left(\frac{1}{p_{1l}} - 1\right)}$$

Indicator

PROPOSITION 4. Under assumptions 1-9 with M=1, setup time reduction has higher selectivity if and only if  $\sum_j \alpha_j^2 < 0.5$ .

- Accuracy for long line  $(M \ge 2)$ 
  - 84.54% out of 10,000 cases, it finds the right selectivity.
  - In the failed cases, derivatives are small.
  - 92.64%: all machines in a product line have the same selectivity.

#### Showcase and Effectiveness



### **Bottleneck Setup Machine**

- On a serial line
  - Which machine is most impeding in terms of setup time?

DEFINITION 3. Machine  $m_i$  is the joint setup bottleneck machine if

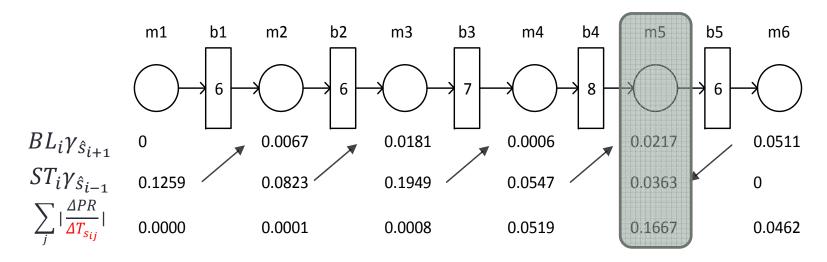
$$\sum_{j=1}^{K} \left| \frac{\partial PR}{\partial T_{s_{ij}}} \right| > \sum_{j=1}^{K} \left| \frac{\partial PR}{\partial T_{s_{lj}}} \right|, \quad \forall i \neq l \in \{1, \dots, M\}.$$

- Indicator is based on the adjusted starvation and blockage.
  - Use downstream setup percentage  $(\gamma_{\hat{s}_{i+1}})$  in idle time to adjust blockage/starvation
  - Use upstream setup percentage  $(\gamma_{\hat{s}_{i-1}})$  in idle time to adjust blockage/starvation
- Arrow assignment rule
  - $BL_i\gamma_{\hat{s}_{i+1}} > ST_{i+1}\gamma_{\hat{s}_i}$ , assign the arrow from  $m_i$  to  $m_{i+1}$ .
  - $BL_i\gamma_{\hat{s}_{i+1}} < ST_{i+1}\gamma_{\hat{s}_i}$ , assign the arrow from  $m_{i+1}$  to  $m_i$ .
- In case of multiple bottleneck, severity index is used.

$$\begin{split} S_i &= |ST_{i+1}\gamma_{\hat{s}_i} - BL_i\gamma_{\hat{s}_{i+1}}| + |BL_{i-1}\gamma_{\hat{s}_i} - ST_i\gamma_{\hat{s}_{i-1}}|, i = 2, \dots, M-1, \\ S_1 &= |ST_2\gamma_{\hat{s}_1} - BL_1\gamma_{\hat{s}_2}|, \\ S_M &= |BL_{M-1}\gamma_{\hat{s}_M} - ST_M\gamma_{\hat{s}_{M-1}}|. \end{split}$$

### Showcase and Effectiveness

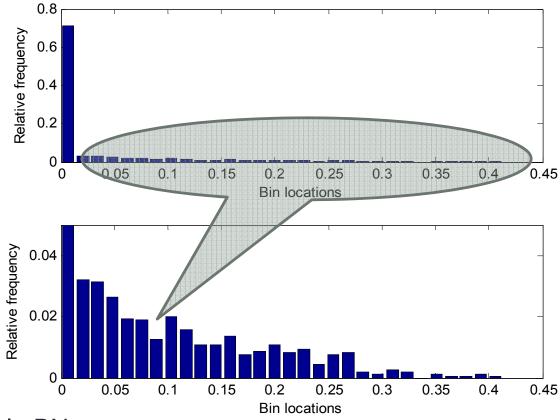
A randomly generated serial line



- Accuracy evaluation:
  - 2000 lines generated
  - 80%: Single BN cases
  - 20%: Multiple BN cases. 70%: true BN machine is in candidate set.

### Effectiveness

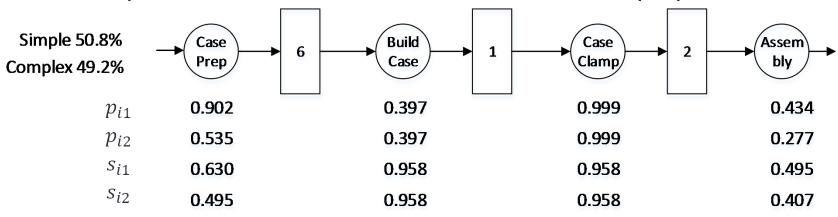
- Simulation comparison:
  - Single BN cases: True and identified BNs, difference of derivatives



Multiple BN cases
 Similar histogram pattern. Avg difference using severity index: 0.06

# A Case Study

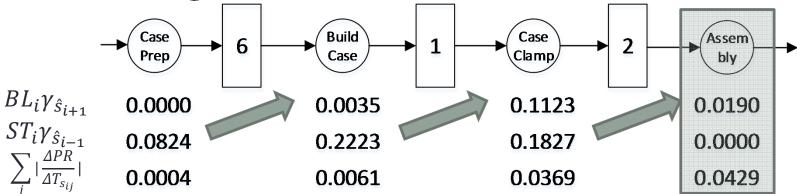
- Techline furniture assembly line.
  - Build main body in a serial line, assemble with drawers and doors at the end. Manual operations.
  - Feeding and shipping inventory large enough.
  - Simple and complex product groups.
  - Setup used for workers to read instructions and prepare tools.



- Throughput 205 (from production count) vs 218 (from model)
  - Model validated

# **Bottleneck Analysis**

- Bottleneck indicators
  - Setup bottleneck product
    - $|0.5 \alpha_1| = |0.5 \alpha_2|$ , same effectiveness, but reduce setup time for complex product is more practical.
  - Bottleneck Machine
    - Arrow assignment finds the true bottleneck machine



- Reduce 20% setup time on simple and complex assembly station
  - The throughput increase 3.21% (7 products).

# Summary

- Effective tools to evaluate flexible production systems with setups are developed.
- Bottlenecks setup machine and bottleneck product are studied.
- Application in a furniture assembly line is carried out.
- Future work
  - Other reliability models (exponential, general)
  - Product sequencing and production control
  - Transient analysis

### Call for Papers

#### Special Issue:

- Continuous Improvement in Manufacturing and Service Systems
- International Journal of Production Research

#### Theme

 Emerging methods and practices of continuous improvement in manufacturing and service systems

#### Focus

 Rigorous quantitative methods and models supporting real world practice in manufacturing and service systems

#### Guest Editors:

- Prof. Jingshan Li, University of Wisconsin-Madison
- Prof. Chrissoleon Papadopoulos, Aristotle University of Thessaloniki
- Prof. Liang Zhang, University of Connecticut

#### Important Dates:

Manuscript submission: June 30, 2015

Tentative publication date: September 2016