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Abstract: The paper presents an approximate analytical method for the performance evalu-
ation of a production line with finite buffer capacity, multiple failure modes and multiple part
types. The paper present a solution to a class of problems where flexible machines take different
parts to process from distinct dedicated input buflfers and deposit produced parts into distinct
dedicated output buffers with finite capacity. This paper considers the case of two part types
processed in the line, but the method can be extended to the case of n part types. Also the
solution is developed for deterministic processing times of the machines which are all identical
and are assumed to be scaled to unity. The approach however is amenable of extension to the
case of inhomogeneous deterministic processing times. The proposed method is based on the
approximate evaluation of the performance of the k-machine line by the evaluation of 2(k-1)
two-machine lines. An algorithm inspired to the DDX algorithm has been developed and some
preliminary numerical experiments are reported.
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1 Introduction

Given the increasing flexibility of manufacturing machines and assembly station it is rather
frequent that more than one part type is produced in a single production line. Also, in automated
systems machines are normally connected by accumulating conveyors which act as finite capacity
buffers. Existing analytical techniques do not allow to model such systems; indeed classical
analytical technique allow to model multiclass systems but do not consider finite capacity buffers
while approximate analytical techniques developed to model transfer lines do not take into
account. different part types. The paper presents a solution to a class of problems of this type
where flexible machines take different parts to process from distinct dedicated input buffers
and deposit produced parts into distinct dedicated output buffers with finite capacity. By
dedicated input and output buffers we intend buffers that can store only one part type. The
proposed solution is developed for the case of two part types, however the approach is amenable
of extension to the multiple part type case. Also the solution is developed for deterministic
processing times of the machines which are all identical and are assumed to be scaled to unity.
The approach however is amenable of extension to the case of inhomogeneous deterministic
processing times.

A typical system of the proposed class is represented in Figure 1 In this case machine M1, M2,
M3, M6, M7 are dedicated machines i.e. they can produce only one part type. On the contrary
machines M4 and M5 are flexible machines and can produce both part types. The selection of
which type of part to produce depends on the state of the system and on a dispatching rule. If
the upstream buffer of one part type is empty or the downstream buffer is full, the machine will
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Figure 1: Example of a system producing two part types

produce the other part type. If both the part types are either blocked or starved, the machine
will not produce. If both the parts can be produced, than the machine will produce part type
A with probability af‘ and part type B with probability o?.

It is important to notice that the proposed system is quite different from assembly /disassembly
systems [2], [1]. Indeed in assembly/disassembly systems assembly machines take contemporarily
different parts from different input buffers to produce a single subassembly while disassembly
machines from one subassembly produce contemporarily different components that are put into
different buffers. In either case there is no selection of components to work on but they are
all contemporarily involved in the process. On the contrary, in the described system a flexible
machine selects a single component to work on.

The proposed system is also different from fork and join networks [3], [4]. Indeed in fork
and join networks each machine can either take the input from different buffers to produce an
undifferentiated product or take in input an undifferentiated product and place it after processing
in different buffers. On the contrary in the described system flexible machines take in input
different parts from different buffers and produce different products placed in the corresponding
buffers. In other words the identity of the part is not lost within the machine.

The problem presented in this paper has been originally stated by S.B. Gershwin and addressed
by Nemec [5]. The original statement however considers a priority rule between the parts and
therefore when both part types can be produced, the part type with the highest priority is
selected. This would correspond in our statement to the case of a® = 1,a® = 0. The solution
approach adopted in Nemec is heavily dependent on the original problem statement because parts
are treated differently depending on the priority. In the proposed approach on the contrary all
the parts are considered in the same way.

It is interesting to consider the fact that the described problem, which has been inspired by
automated production system, is similar to other relevant problems that can be addressed with
the same methodology. In particular it is interesting to consider the case of production networks
where different enterprizes cooperate to produce complex products. In this case each enterprize
of the network can be modelled as a flexible machine while input and output storages can be
modelled as buffers.

2 Outline of the method

In this paper we counsider transfer lines composed of K machines in which two distinct part
types (type A and type B) are processed in certain ratios. Both part types follow a linear path
through the system since they are processed by all the M; machines (with 1 =1, ..., K), starting
from the first one and finishing to the last machine after which they leave the system. Adjacent
machines are separated by two different buffers B{‘ and BP with limited capacities dedicated
to temporally store parts of types A and B respectively. Buffer capacities between machines M;
and M; | are denoted with N;4 and NP for part types A and B respectively. Machine M; of
the system works part type A and part type B in the ratios af‘ and a? when is not blocked or
starved.

Machines are multiple failure mode machines, i.e. they are unreliable and can fail in F; different



modes as assumed in [6]; we denote with p; ; the probability of failure of machine M; in mode j
and with 7; ; the probability of repair of machine M; failed in mode j (with j =1,..., F}).

A detailed list of the assumptions used in the proposed model is described in the following;
assumptions regard the behavior of the machines and describe in particular how failures can
occur and how machines select the part type to produce on the basis of blocking and starvation
that characterize the part flow in the system.

e The first machine is never starved, i.e. there is an infinite number of pieces of both part
types waiting for being processed in the system.

e The last machine is never blocked, i.e. there is an infinite space downstream the system
where it is always possible to store pieces processed by the system.

¢ Blocking before service (BBS) is assumed for the machines.
o If buffer BA (BP) is full then machine M; will process part type B (A) if possible.

e If buffer B | (B ) is empty then machine M; will process part type B (A) if possible.
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e If for a given machine both the upstream buffers are not empty and both the downstream
buffers are not. full the machine will produce a part of type A with probability 04;4 and a
part of type B with probability af (a? +af = 1).

e Operation dependent failures are assumed, that is machines can only fail if they are not
down, not blocked and not starved.

e A given machine M; can fail in F; different failure modes.

e At a given time a machine can be failed in only one mode and cannot enter in a different
failure mode.

e Mean time between failures (MTTF) and mean time to repair (MTTR) of machine fail-
ures are geometrically distributed and their average values are equal to 1/p; ; and 1/r; ;
respectively (with i =1,..., K and j =1,..., F}).

The method evaluates the performance measures of the systems described in the previous
section by using a generalization of the decomposition technique proposed in [6]. The method
can also be used in principle with the decomposition technique proposed in [7]. The analyzed
system is decomposed into K — 1 sets of two-machine lines that together represent the behavior
of the system. Each set is composed of two different two-machine lines or building blocks, each
one modelling the flow of one of the two part types in the system (Figure 2). In other words the
method creates a two-machine line for each buffer of the original line; each building block is com-
posed of two pseudo machines and one intermediary buffer. The upstream machine represents
the behavior of the portion of the system that precedes, in the original line, the corresponding
buffer considered in the building block. In the same way the downstream machine represents the
behavior of the portion of the system that follows, in the original line, the corresponding buffer
considered in the building block. The idea is to analyze simple building blocks, easy to study
with existing techniques, instead of the complex original system. In such a way the complexity
of the analysis is reduced to study several two-machine lines instead of a long production line.
However, the different two-machine lines are not independent and have to be analyzed by means
of decomposition equations. To do this, the parameters of the pseudo machines are calculated
so that the flow of parts in the buffers of the decomposed systems closely matches the flow in
the corresponding buffers of the original line.

Therefore, for buffers BZA and BP of the original line, two building blocks (Figure 2) are
created. The first building block models the flow of type A parts and is composed of the pseudo
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Figure 2: Decomposition of the original line

upstream machine MU(4) (), the pseudo downstream machine M P4 (4) and the buffer B4 ().

These two pseudo-machines together with the buffer form the building block a(i). The second
building block models the flow of type B parts and is composed of the pseudo upstream machine
MYB) (), the pseudo downstream machine M) (i) and the buffer BP(i). These two pseudo-
machines together with the buffer form the building block b(z). To model the interruptions of
flow through the buffers of the original line, failure rates of different modes are associated to each
pseudo-machine. In the following we will consider the case of the upstream pseudo machines. A
similar reasoning applies to the downstream pseudo machines.

Interruptions of flow due to a failure in the machine M (3) of the original line are modelled
assigning to the upstream pseudo-machines local failure modes with probability of failure p; f,
and probability of repair r; f, (i.e. the same as the ones in the original line).

To mimic the interruptions of flow due to starvation, remote failure modes are introduced and
assigned to the upstream pseudo-machine of the building block, namely MY{4) (3) and MYB)(3).
These remote failures have probabilities p;fj(cfl) and pkv’gfj) and probabilities of repair r;fflA and

V(B)

Tk fo where j,= 1...i — 1, k = 1...i — 1 indicate the machines of the original line that actually
failed (and are therefore responsible for the starvation) and f; = 1...Fj, fo = 1...F} indicate the
failure modes in which that machines failed. For these remote failure modes, we assume that
the repair probabilities are identical to the repair probabilities of the machine of the original
line that actually failed. On the other hand, the probability of failure for these remote modes
are not known and must be evaluated by using decomposition equation.

The described failure modes follow exactly the approach described in [6] to predict the
performance of a transfer line producing only one part type.

To model the interactions between the parts competing for the same machines, in addition
to the described failure modes, a new failure mode has been introduced and assigned to each
pseudo-machine of the building blocks. This new failure mode has been called competition failure
and mimics the situation in which a machine does not produce a given part type because it is
busy producing the other part type. This new failure mode has probability of failure pxglll ,

pkv’%ill and probability of repair r}f}fj_l , ,‘;%2_1 for part types A and B respectively. Another

issue generated by the presence of two part types is that even if a machine is starved or blocked
under the point of view of a given part type, it can produce the other part type and can fail
while producing that part type. Therefore, the probabilities of local failures must be adjusted
to take into account this situation.

In order to estimate failure and repair rate of the competition failure and to adjust local
failure probabilities, it is necessary to introduce a model of a combined pseudo machine MY (i)
producing two part types.



The solution approach is based on the analysis of all the states in which the combined pseudo
machine MY (i) can be and on the solution of the Markov chain of the combined pseudo machine.
In this Markov chain some transition probabilities are not known, however, the probabilities of
some states of this Markov chain can be obtained from the results of the upstream building
blocks. Indeed, these values are obtained by means of decomposition equations which are a
generalization of the ones derived in [6]. Therefore, at the end, it is possible to solve a linear
system of equations which allow to evaluate both the unknown transition probabilities and the
probabilities of all the states of the Markov chain.

The probabilities obtained for the various states of the combined pseudo machine are then
used to build two separate models, one for each upstream pseudo-machine of the two building
blocks (MU (1), MU(B)(7)). By studying these two models it is then possible to calculate new
local failure parameters for the pseudo-machines, considering the possibility for each machine of
going down due to a failure occurred processing the other part. In addition, it is possible to find
the probabilities of failure and repair of the competition failure. These parameter completely
define the pseudo machines and allow in turn to evaluate the building blocks.

3 Detailed description of the method

3.1 Combined pseudo machine model

The picture below (Figure 3), represents the Markov chain of the combined pseudo machine
MV (3). To simplify the picture, all the states of the same type are grouped into a unique state
without considering different failure modes. Obviously in writing the equations it is important
to distinguish all the different failure modes, to correctly evaluate state probabilities. Each state
in the combined pseudo machine is defined by two state variables, one for the pseudo-machine
of the line A and the other for the pseudo-machine of the line B. Each state variable can assume
four values that, if we consider an upstream machine, are: working (W), down in local mode
(R), down in remote mode (V) and blocked (B) . In total there are 16 possible states. Tt must
be remembered that a combined pseudo machine is related to only one physical machine (the
local machine) of the original line. As a consequence, a combined pseudo machine cannot be
both working a part type while being down in local mode for the other part type therefore
the two states WARE RAW P are not feasible and are not represented in the picture. Also
the state RARP represents a situation where the local machine is down and therefore cannot
produce either A or B. We call this state pure local down state and we rename it R. Finally the
state WAW P represents a state were for both part types no failure, local or remote, is present
therefore the machine can produce either A or B.

In the following, some key characteristics of the Markov chain of the combined pseudo
machine MY (i) (Figure 3) are discussed:

e If the combined pseudo machine is in state WAV ® and while producing part type A (part
type B cannot be produced because it is down in remote mode) it fails, it goes in state
RAV B This means that the combined pseudo machine is down both in local mode and in
remote mode. From this state it can go either to a pure local down state R if the remote
failure is repaired or back to WAV E if the local failure is repaired or to WAWPE if hoth
local and remote failures are repaired. A similar reasoning applies to the states WABP,
VAWE, BAWE.

e If the combined pseudo machine is in pure local down state, by repairing the local failure
it always enters the WAW?P state.

e When the combined pseudo machine is in state WAWPE it can process A or B depend-
ing on the processing rate ! and of (! + af = 1). Therefore from state WAWE,



Figure 3: Markov chain of the combined pseudo machine

since only one of the two part types is produced, it is not possible to go to states
BABB BASE SABE SASE (because if a part type is not produced it is not possible
to have blocking or starvation for that part type).

e During a time interval a given machine of the line can at most process one part; therefore
it is impossible to move from states SA4SF or BABP to state WAWB. Indeed these
transitions would imply that either one machine upstream in case of starvation or one
machine downstream in case of blocking processes two parts during the same time interval.

As already mentioned, in Figure 3, to simplify the picture, all the states of the same type are
grouped into a unique state without considering different failure modes. The probability of these
14 grouped states is therefore the sum of the probabilities of the disaggregated states considering
all the failure modes. It must be noticed that for each machine of the line a competition failure
is added to the real failures of the machine to take into account the presence of two part types.
Therefore machine M; has F; + 1 failure modes.

It must also be noticed that in this Markov chain not all the transition probabilities are
known. Indeed the values of p}f(f) and ka’(ch) cannot be derived directly from the original line
and therefore they must be found using appropriate equations. In the following the 14 sets of
equations required to evaluate the probabilities of the various states plus the equations required
to evaluate the unknown transition probabilities are provided for the upstream combined pseudo
machine.

Since in all the lines the flow of material has to be the same, we can write the conservation of
flow equations, one for line A and one for line B:

i1 Fj+1 K Fptl

WAWBaa+> > wAVE+ Y N waBf, = EYi-1) (1)
j=1 f=1 k=i+1 f=1
i—1 Fj+1 Kk Fi+1

WAWBap +3 S wWhVA+ > S whBl, =EP(i-1) (2)
j=1 f=1 k=it+1 f=1

As originally proposed in [6], we introduce remote down states for the combined pseudo
machine to mimic starvation. Therefore the probability of being down in remote mode of the



combined pseudo machine has to be equal to the probability of starvation of the preceding

building block.

i—1 Fip+1 K Fip+1

B B A -
Yo VEVIE Y X VikBe, + WPV +ZR Viy = Psjip (i 1)
k=1 fom1 k=it fa—1
j—l Z—lflzl...Fj—i-]
i—1 Fj+1 K Fj+1
B .
X ViVib+ X D BV, + W ka2+ZRngkf2 Psip,(i—1)
Jj=1 fi=1 j=i+1 f1=1 g=1

k=1.i—1fo=1.F+1

Given the fact that the upstream combined pseudo machine of building block ¢ must be coherent
with the building blocks a(i) and b(7) introduced for part type A and B respectively, we can
write the following equations related to the probability that the combined pseudo machine is

blocked:

1—1 Fp+1 K Fp+1
B A .
Z Z kaz Jf1+ Z Z B ka2+ZRngJf1 +W BJf1 ij:ﬁ(z)

k=1 fom1 k=it1 fo=1
j=1+1.. K'flzl...Fj-i-]

i—1 Fj+1 K Fj+1
A B .
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j=1h=1 Jj=i+1 fr=1 g=1

k=i+1..K;fo=1..F

(6)

Considering the states R4V P , RABE | RBVA | REBA | we can write node equations balancing

the probability of entering these states with the probability of exiting the same states.
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Considering the states VAVE | VABE  BAVE  BABPE we can write node equations balancing

the probability of entering these states with the probability of leaving the same states

A V(A) V(B) BysA V(B) V(4) V(A) V(B)
WAV i U=y g, )+ WOV g (U= 1) = Vi Vil (e 1+ 3,))
j=la-1LfA=1L.Fi+Lk=1.40-1fo=1.F, +1

A B(A B B
WABE o1 = D)+ WO B pp (1 = V) = B BE L (7D 4+ )
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A
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(12)



j=la-1Lfi=1L.F+Lk=i+1.K;fo=1.F,+1
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Considering the set of states R , RAVE | RABE | RBVA | REBA, we can write equations
balancing the probability of entering this set of states with the probability of leaving this set of
states.

i—1 Fj i-1 Fy K Fp+l K F;+1
Rig+> D REVI +> > RIVID, + 30 > REBIL+ D> D R B I = (14)
i=1 =1 k=1 fo=1 k=i+1 fo=1 j=t+1 f1=1
i—1Fj+1 i—1 Fp+1 K F;+1 K Fp+l
AvirB By, A B AnpB
P WAWP 3" WOV +3 3 whVS, + > Y WEBL + > > WABEY)
Jj=1 fi=1 k=1 fa=1 Jj=i+1 f1=1 k=i+1 fo=1
g:1...F7;

In order to calculate the unknown transition probabilities we first write the node equation for
node WAV E and then after some manipulation we obtain:

PsP . (i—1)
V(B) _ 5kt V(B) _ e
P, = EB& -y Thp  k=1.K;fa=1.F+1 (15)

Psi, (i —1)
V(A _ T80 VA .4 4 _
Pis. = gAG Ty h 0= lodi—1; f1 = 1L..F; 41 (16)

3.2 Pseudo machine models

Once obtained the probability of being in each state of the combined pseudo machine, we can
build two models, one for each pseudo-machine MY (5) and MU(B)(j). This results in a five
state model. The probability of each state is obtained by summing the values calculated with
the previous system. For the pseudo-machines MY(4) (i) and MY(P)(4), we have:

WA* — WAWBOCA 4 WAVB 4 WABB WB* — WAWBOCB 4 WBVA 4 WBBA
VA* — VAVB 4 VABB 4 WBVA 4 RBVA VB* — VAVB 4 VBBA 4 WAVB 4 RAVB
RY = R+ RYVE + RABP RP" = R+ RBVA 4+ RPBA

BA =wBpA+vEpA4 BABE + RFBA BF =wABP +VABP + BPBA + RABP
WP =wAaWBap WA =WwAWBay

Having these two models, one for each pseudo-machine, and knowing all the state probabil-
ities, it is possible to calculate local failure parameters for the pseudo machine. It must be
noticed that the probability of entering in local failure is higher than the one of the correspond-
ing machine in the original line because we take into account the probability of failing while
producing the other part type. In addition since we know the probability of being in the com-
petition failure state (that models the situation in which the pseudo-machine does not. produce
because the other pseudo-machine is producing) we can use it to evaluate the parameters of
the competition failure. To estimate the parameter of the competition failure we introduce the
assumption that the repair rate of the competition failure must be as high as possible to allow a
frequent switch in the production of the two part types. In doing this we consider the constraint
that the sum of all the failure probabilities for the various failure modes must be lower than 1.
We can evaluate these parameters utilizing balancing equation to nodes R4" and W%

A RA* RA*

Pig = wa"he = gag _q)he 97 . (17)



A* WB A*
PiFit1 = A T Fit (18)

There are two cases for deciding the value of pfl;i 41 and r;“}i IE

A* ES A* A*
wE<w =i =1 pipg=W5W (19)

B o i A* A A oA B, A
W2 >=W*" =pip=ap rip=W" /W' p (20)

In a similar way we can find for machine MU(P)(4) the values of pf; ; pf}i 41 and rf}i +1- Once
local, remote and competition failure probabilities are evaluated they can be used within the
building blocks a(7) and b(7).

4 Preliminary numerical results

In order to evaluate the precision of the proposed method, simple cases are considered in the
preliminary numerical analysis reported in this Section. In particular a two-machine/two-buffer
system and a three-machine/four-buffers are studied with the objective of estimating their av-
erage throughput and average buffer levels. Also the number of iterations necessary to obtain
performance parameters are investigated to test the convergence of the method. Parameters of
the first system analyzed are reported in Table 1.

CASE 1| p; | m | BAG) | BBG) | o | oF

i=1 |0,23/0,4]| 4 6 10604
i=2 10,37]0,3 0,6 | 0,4

Table 1: Two-machine/two buffer line: system parameters.

EG) | m | Ps() | Po(i)
TYPE A | 0,264 | 3,223 | 0,011 | 0,457
TYPE B | 0,183 | 5,265 | 0,003 | 0,537

Table 2: Two-machine/two buffer line: average throughput and buffer levels.

The results reported in Table 2 have been obtained by a first implementation of the proposed
method. The number of iterations necessary to arrive to a convergence in this particular case
is equal to 9. Tt is worthwhile to notice how the ratio between throughput of part types A and
B changes from the the initial values of ' and af used in the system and reported in Table
1. Indeed, throughput ratios effectively obtained by the system can be calculated by using
numerical results in Table 2 as follows:

A
axd = EAEW =0, 591 (21)
axl = B2 = 0,409

We can see that using resulting values of throughput, the values of ax%and ax? are quite
different from the values adopted in the system. This is due to the fact that the occurrence of
blocking is different for part type A or B depending on their relative buffer capacities. Indeed, in
this case the flow of part B, which has a larger buffer capacity than product A. is characterized
by a frequency of blocking that is lower than that of product A (see Table 1). It would be
important as a future development of the method to develop a method able to find out the



values of precedence parameters for each machine of the line, starting from the values that we
want effectively to obtain from the system.

The other case considered in this paper is a line with three machines and four buffers. The

parameters of this system are reported in Table 3. Also in this case results have been obtained

in few iterations. Effective values of ax? and ax

B are equal respectively to 0,585 and 0,415.

The difference between these values and the ones used in the system is greater than the one
measured in the previous case due to the fact that the line is longer and therefore occurrence of
blocking and starvation increases during the production.

CASE 2 | p; r; | BAG) | BB@G) | ot | &F
i=1 [0,12[0,35] 6 8 10,604
i=2 |0,16 | 0,3 6 10 0,6 |0,4
i=3 10,08 0,5 0,6 | 0,4

Table 3: Three-machine/four buffer line: system paremeters.

EAG) | BEPG) | mitG) | »P () | Ps(i) | PbA(i) | PsP(i) | PbB(i)
i=110,381 [ 0,270 | 4.500 | 6,861 | 0,018 | 0,293 | 0,001 0,362
i=210,381 | 0,270 | 0,737 | 0,565 | 0,467 | 0,001 | 0,556 | 1.6E — 06

Table 4: Three-machine/four buffer line: average throughput and buffer levels.
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