Production Lines with Smart Stations
S. Yeralan and S. Kirli
University of Florida

Gainesville, FL 32611

Overview and Approach
The topic of production lines has attracted much attention in industrial engineering and operations research. Due to the mathematical intractability of the associated formulations, much of the analytical work has been limited to short lines with two or three stations. Most studies lead to stochastic models due to uncertainties in station service rates and breakdown. Meanwhile, recent work in production control and scheduling has included mostly deterministic studies of production lines, especially related to control policies such as "kanban" and "conwip" [1,5,6,14,15,17].
This paper acknowledges the fundamental effects of embedded control in manufacturing workstations.  With virtually all stations governed by networked embedded controllers, it becomes necessary to re-evaluate the underlying model assumptions.  For instance, rather than top-down static control of the stations by setting the operating parameters (e.g. buffer capacities), stations may be given the freedom to collect local information, communicate such information over the network, and determine their own operating parameters.  In this sense, each workstation becomes what is called an autonomous agent.  Moreover, the healthy amount of inter-agent data exchange ensures that system-level information is disseminated throughout the production line.  Moreover, a collection of autonomous agents is considered to be a most suitable environment for the production line to evolve into an effective system [4,7,8,11,13,16]. 

Perhaps the most important consequence of a collection of cooperating autonomous agents is the so-called emergent system behavior. Emergent behavior refers to those system properties and system dynamics that arise from the numerous modes of interactions among relatively simple components [2,3,9,12]. The example of an ant colony is often cited as an example.  Although each ant has limited data processing capabilities, the ant colony as a system displays very complex behavior.  The colony builds nests, collects and stores food, defends the nest, relocates in case of a flood, propagates, etc. It is well accepted that such complex system behavior cannot be attributed to any given component of the system, but rather emerges from the interactions of the components.

Emergent behavior gives rise to another important aspect of studies into smart systems. As complexity is not assigned to a given component, the analytical methods, which seek an understanding of the system by studying its components, often fall short. Moreover, it becomes difficult to obtain predictive computational theories of emergent behavior, at least with the current set of conceptual and mathematical tools at our disposal. Such studies often lead to explanatory theories rather than predictive ones.  Moreover, the studies are often descriptive with somewhat qualitative aspects, rather than the computationally mature formulations, such as queuing models. Nonetheless, it is possible to apply the cycles of the scientific method, i.e. observation, hypothesizing, experimentation, and revision, to studies of emergent behavior.  As mentioned, one would expect explanatory descriptive theories (e.g. as in the theory of evolution) rather than a more computationally precise theory.

This paper gives a summary of the results and a general discussion.  The reader is referred to Kirli [10] for a comprehensive review of the material.

Model

In this introductory report, we consider the simplest model with the most modest operating policies to test the validity of the approach. We consider a production line with smart stations separated by fixed-capacity buffers. Stations have limited data collection and processing capabilities.  Specifically, each station monitors its state as well as the state of its upstream buffer. Interstation data exchange is expected to introduce a new level of complexity.  As an initial step, we keep the model intentionally simple.  Specifically, we consider the system without interstation data exchange. We limit state information to the state of the station (working, blocked, under repair, etc.) and the state of the upstream buffer (number of items in the buffer).  Interstation data exchange and its effects will be presented in future reports. We measure the performance of the system by a cost function.  Each successfully produced item generates revenue.  Similarly, we assume that there is an inventory or holding cost, measured in monetary units per item per unit time. The holding cost discourages the buffers from filling up, while the revenue provides the incentive to increase production.  The revenue is distributed among the stations, each station receiving a portion proportional to its expected service time.  This way, stations with a longer expected service time, and thus are more likely to be the bottlenecks, have more incentive to increase their individual productivity. The lines are considered to run for a given amount of time.  The profit obtained in this period determines the relative profitability of the line.

Similarly, we consider the simplest rules that set the operating policies based on the system state.  In particular, we allow the station to set the capacity of its upstream buffer based on its performance. In a slightly more "intelligent" fashion, we later introduce the idea of "delay time" as a mechanism to set the operating policy. Delay time is the additional idle time a station inserts when it is available and there is at least one item in its upstream buffer. By delaying the start of operating on the item, the station controls the flow rate, and thus, limits inventory build-up in the downstream buffers. Moreover, unlike the buffer capacity, the delay time need not be an integer.  This allows a finer control over the flow rate.  Without such finer control, the production line sometimes displays oscillatory behavior.  This behavior is believed to be a result of the integrality constraint on the decision variable, the buffer capacity.  It is conjectured that in some cases, a capacity of, say,  N not large enough, and N+1 is too large. In such cases, the system oscillates between picking N and N+1.  For small N, which is often the case in balanced lines, especially when the holding costs are relatively high, the performance difference between a capacity of N and N+1 becomes significant.

Hypothesis 

We hypothesize that a production line consisting of smart stations can achieve a "reasonable" level of profitability with very simple rules governing its operating policy.

Implicit in the approach is the flexibility and adaptability that the smart line introduces.  We hypothesize that while some control schemes such as the kanban policy or the push policy perform well in given circumstances, the smart line will perform well in all circumstances.  The profitability is measured as the difference of the revenue and the inventory costs. The term "reasonable" is inherently qualitative. We will compare the profitability of the smart production line to some commonly used schemes such as the kanban and the push policies. We will consider the smart model to have performed reasonably well if it achieves profitability within 5 to 10% of the best policy for the circumstance.

Experimentation

We considered several cases by varying the number of stations, the service time, time to breakdown, and time to repair distributions, and operating disciplines.  Although the general observations pertain to all cases, we present the results of a subset of these cases, all involving four stations.  The profit in each case is computed when corresponding analytical models are available. Otherwise, the profit is obtained by simulation studies. We consider several classes of lines determined by the nature of the bottleneck. The service time (Si), time to breakdown (Bi), and time to repair (Ri) are all considered to be uniformly distributed.

1. No bottleneck, (balanced line) :
Si ~ U[30, 50], Bi ~ U[600, 1000], Ri ~ U[160, 240], for i=1,2,3,4.

2. Single mild bottleneck : 
Si ~ U[30, 50], for i=1,2,4 and S3 ~ U[40, 60]
Bi ~ U[600, 1000], Ri ~ U[160, 240], for i=1,2,3,4.


3. Single strong bottleneck : 
Si ~ U[30, 50], for i=1,2,4 and S3 ~ U[60, 100]
Bi ~ U[600, 1000], Ri ~ U[160, 240], for i=1,2,3,4.


4. Multiple bottlenecks :
Stations 1 and 2 are identical fast stations with frequent breakdowns, station 3 is a slow station with no breakdown and station 4 is a fast station with no breakdown. 
Si ~ U[30, 50], for i=1,2
Bi ~ U[160, 240], Ri ~ U[160, 240], for i=1,2.
S3 ~ U[60, 100] and S3 ~ U[30, 50]


5. Two bottlenecks :
Si ~ U[30, 50], for i=1,2,4 and S3 ~ U[60, 100]
Bi ~ U[160, 240], Ri ~ U[160, 240], for i=1,2,4.
Station 3 does not break down.


The inventory holding cost is assumed to be a monetary unit per item per unit time.  The revenue is then measured according to this monetary unit.  That is, the revenue is normalized according to the holding cost.

As the line operates, each station sets its own operating policy.  Two schemes are considered.  In the "buffer learning" scheme, each station determines its buffer capacity.  The decision is based on balancing the revenue share of each station against the inventory holding cost associated with the upstream buffer. Each time the buffer capacity is changed, each station waits for a period of time and evaluates the effects of the change.  If the change results in an increase in profitability, the buffer capacity is changed more in the same direction.  Otherwise the buffer capacity is changed in the opposite direction. A similar scheme is used for the delay time. The delay time is a continuous variable, so that the changes are done in steps proportional to the amount of change in performance.

In order to evaluate the robustness of the production line, we also consider the case where the station parameters change over time.  Each of the five cases is considered in succession, each case being asserted for a given number of time units.

Sample Computational Results

We run the line for 1,000,000 time units. Each run is divided into 100 periods of 10,000 time units. The stations are allowed to update their operating parameters at the end of each of these 100 periods. The five cases given above are studied.  In addition, for each case, a series of kanban and conwip policies are considered. Each time, the profitability is compared to the best performing policy. The relative profitability is plotted for the "buffer learning (B_L)" and "delay-time learning (D_L)" schemes. The performance of the one-card kanban (K_1) and 10-card kanban (K_10) policies are also given for comparison.


[image: image1.wmf]80 

85 

90 

95 

100 

Profit %

500 

1000 

1500 

Reward/Cost

K_1

K_10

B_L

D_L


Figure 1.a. Relative profitability as a function of revenue (case 1).
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Figure 1.b. Relative profitability as a function of revenue (case 2).
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Figure 1.c. Relative profitability as a function of revenue (case 3).
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Figure 1.d. Relative profitability as a function of revenue (case 4).
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Figure 1.e. Relative profitability as a function of revenue (case 5).

The four cases, case 1, 2, 4, and 5 were asserted in succession, each for 100 intervals of 10,000 time units.  The learning behavior of the system with the delay-time learning scheme is shown below.  Note the transitions that occur at the switchover points.  The transition from case 1 to case 2 is especially rough, as the system tries to adapt to the new circumstances. Figure 2.b shows how delay time for station 3 varies during the experiment.  
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Figure 2.a. Relative profit over time. R/C=1000.
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Figure 2.b. The evolution of station 3 delay time. R/C=1000.

Observations and Conclusions

Although only a subset of cases is presented, several general properties were observed. First, and perhaps most importantly, as observed in Figures 1.a through 1.e, the smart lines with their limited learning schemes prove to be adaptable enough to yield performances comparable to the best policies under the circumstances.

A relationship between responsiveness and performance has been observed. In general, the performance of the line may be improved if the station finds better operating parameters. Such search is more important if the environmental conditions experience change during the operation.  However, if the no such environmental change occurs, the search effort reduces system effectiveness. Once a near-optimum operating point is reached, further searching pushes the system into suboptimal operation. So, a careful balance is needed to ensure that the system will respond to environmental changes while maintaining the stability to take advantage of the near-optimal operating policy achieved. Such concerns inevitably lead to another layer of learning, where the system seeks the best tradeoff between responsiveness and performance. 
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