
New Developments within MRP Theory
Robert W. Grubbström

Department of Production Economics

Linköping Institute of Technology

S-581 83 Linköping, Sweden

e-mail: rwg@ipe.liu.se 

March 1998 

A number of issues emanating from research dealing with multi-level, multi-stage production/inventory systems (MRP in a general sense) are highlighted in this paper. This research direction has been applying the Input-Output/Laplace transform approach.

Input-Output Analysis in combination with Laplace transforms has been used for deriving the basic balance equations for multi-item cases when lead times are present in dynamic production/inventory systems and for prescribing principles for dynamic lot-sizing and safety stock determination, inter alia. The Input-Output methodology has been used for analysing product structures (Bill-of-Materials) and capacity requirements in a compact algebraic form. The transform has enabled short-cuts in three simultaneous ways, namely (i) by acting for the classical purpose of handling differential/difference and integral equations including effects of time lags, as well as (ii) for being a moment-generating function for the probability distributions of the external demand processes, and (iii) as a methodology for evaluating payment streams over time (the annuity stream approach). 

Areas having been covered concern multi-stage lot-sizing in combination with safety stock determination, questions of rescheduling issues and, to some extent, capacity requirements planning. Certain extensions to game-theoretic models dealing with spatial transportation problems have also been made.
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1.
Introduction
Production is the transformation of one set of resources into a second set. In order to describe the constraints and opportunities for production, different methods have been developed through the years both in the practical engineering context and from an academic point of view (Grubbström, 1995). For the multi-level, multi-stage production-inventory system an analysis applying the combined methodology of Input-Output Analysis and the Laplace transform has proven to be useful. 

In practice, the managerial information system dealing with multi-level, multi-stage production-inventory systems is referred to as Material Requirements Planning (MRP). Here, product complexity as well as lead times are essential ingredients. In this paper we allow these terms to be used in a synonymous way both for the theoretical analysis and as a name for the corresponding practical information system. 

In a multi-level manufacturing system finished products, subassemblies, components, raw materials, etc., (items), are distinguished. MRP reduces a master production schedule of finished products into a time-phased suggested schedule of requirements of intermediate items to be manufactured and purchased, based on the estimated external demand for finished products. This “parts explosion” determining requirements from higher levels down to lower levels (upstream to downstream) traces the product structures. 

Below we provide a brief overview of the MRP theory developed so far, including certain results concerning safety stocks, net present value applications and capacity requirement considerations. 

2.
Product Structures

There are mainly four theoretical ways for representing a product and its quantitative relationships with its components, the Bill-of-Materials (BOM). These methods are (i) the product structure tree, (ii) the Gozinto Graph, (iii) the input matrix of Input-Output Analysis, and (iv) using a listing of sets of item indices for predecessors and successors.

The product structure tree is widely used in the engineering context and can be found in many MRP texts, such as in the first book on MRP, Orlicky (1975). It contains the specific description of the component parts which are required to make up the end items including quantities used per unit of end item and their relationship to the end item. When the BOM is expressed in terms of a product structure tree, its hierarchical relationship becomes more intuitive. The item on the highest level in such a tree structure represents the end item. Associated with a lead time, each level involves some action to accomplish, such as assembly, processing, purchasing of materials, and so on. The left and middle parts of Figure 1 illustrate a simple example of product structure trees.

The Gozinto graph was first proposed by Vazsonyi. It provides exactly the same information as a product structure tree but as a more compact network, cf. Vazsonyi (1955, 1958), Müller-Merbach (1969, 1971, 1973), Wiggert (1971) and Sohal and Keith (1987). The Gozinto graph is illustrated in the right-hand section of Figure 1. 

A mathematically superior way to describe the production structure is by means of the input matrix from Input-Output Analysis. This matrix was first introduced by the recently deceased Nobel Laureate Wassily Leontief (1928, 1936, 1941). Leontief’s theory was further developed in the 1950s by Koopmans and others. Unlike Leontief’s original model, which focused on the formulation of the balance between different sectors of an economic system, Koopmans et al. (1951) developed Activity Analysis with the aim to optimise an objective function subject to the limitation of the availability of primary input factors. The technology matrix T was introduced as the difference between the output matrix G describing production output from the processes of the system and the input matrix H describing the similar input requirements. The relationship between the primary input factors of production, intermediate products and final products was given a compact and easily interpretable form. A theoretical framework was developed to explain the production opportunities and to derive the efficient point set of production. 
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Figure 1.  Example of product structure trees and the corresponding Gozinto graph. There are two end items (A and E) and capacity requirements (X and Y) are taken into account (in the two product structure trees).
Vazsonyi mentioned that even though the Gozinto graph provided graphical information of the product structure, it is still inconvenient to determine the total internal quantity requirement of each item from this graph. A matrix, called the next assembly quantity matrix was introduced to set up a mathematical model for the product structure. This matrix is identical with the input matrix of Input-Output Analysis. Vazsonyi also developed a model for the time-phasing of requirements including properties such as safety times, spare parts and work-in-process inventory in tabular form. This method may be interpreted as a forerunner to the practical MRP approach starting in the 1960s.

Zangwill (1966) and Veinott, Jr, (1969) presented examples of a multi-facility lot-size problems applying Leontief-oriented models, where the internal demand of items was described by a technology matrix. Later, Koehler et al. (1975) followed up this line of thought. Axsäter (1976) identified the BOM as an input matrix and applied this matrix in a dynamic model for describing the production and stocking of a complex product. Grubbström and Lundquist (1977) applied the transform method to a dynamic version of an input-output model based on Axsäter’s approach. But lead times were yet to be introduced. Chandra and Schall (1988) used the Leontief input-output model associated with linear programming to determine performance measures of a flexible manufacturing system (FMS). 

Grubbström and Lundquist (1989) discussed relationships between Input-Output Analysis, MRP and production functions. They concluded that there was an obvious relationship between the Mater Production Schedule, Material Requirements Planning, the Bill-of-Materials, and a general linear production-economic system interpreted in terms of an input-output model. Input-output methodology may also be applied to systems of a more complex nature than the typical assembly system such as a paper mill (Grubbström, 1990).

3.
Input-Output Analysis applied to MRP
In Input-Output Analysis describing a multi-item production system with a proportional dependence between inputs and outputs (cf Lancaster, 1968), the production system is made up of a finite number of processes L, and contains a finite number of products (items) N, inputs as well as outputs. A process is run on a certain activity level, which may be varied. The activity levels, one for each process, are collected into an L-dimensional column vector x. The input volumes of each product to each process are described by a set of constant input coefficients. Collecting these coefficients, the N(L input matrix H is obtained, in which its element hij is the quantity of item i required for the jth process running on unit activity level. Items may conveniently be interpreted not only as components but also as amounts of services required (capacities). Similarly, all output volumes of each product from each process compose an N(L output matrix G. The net production y of the total system, i. e. the volumes that may leave the production system, is then determined by
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where T = (G – H) is the technology matrix. 

Disregarding capacity requirements, the H matrix of an assembly system is quadratic. Let us denote the top square part of H by 
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 and the remaining bottom part by 
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. When each process produces a unique product, we obtain an elementary system and G is the identity matrix, G = I, assuming processes and products to be numbered alike. Solving for the activity levels x, we then obtain
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where H* is short for the inverse 
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. Vazsonyi (1955, 1958) refers to this inverse as the total requirement factor matrix, which is identical to the Leontief inverse in Input-Output Analysis.

In the net production vector y, positive and negative components correspond to finished products (net outflow) and purchased materials (net inflow), respectively. Items produced in one part of the system and completely used in other parts of the system have a zero net production. Therefore, the equations above can be interpreted in terms of MRP. The vector x corresponds to gross requirements and consists of external demand for final products and spare parts, as well as internal demand. The net production vector y shows the export opportunities (Master Production Schedule). The input matrix H provides a complete description of the product structure. With reference to Figure 1, the matrix H including capacity requirements (of X and Y), and the two matrices 
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If all product structures are hierarchical as in the case of Figure 1, meaning that there is no feedback of higher-level items entering into a lower-level item and no product being part of itself, then the items may be numbered in such a way that items on lower levels have indices taking on higher values. This provides an opportunity to make 
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 triangular with zeros in its main diagonal and above (an assembly system). The triangular nature of the input matrix is valid for assembly and pure arborescent systems only. If there is any form of feedback this property fails. 

4.
Item Values and the Echelon Stock

The economic value of items present in the system may also be analysed with the aid of the input and Leontief inverse matrices. Consider the simple case (disregarding capacities) that a value amounting to 
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 is added to the joint value of the components, when item j is assembled. If the total value of each component is 
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where v and c are row vectors collecting the components 
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, respectively. Taking the inverse, we obtain: 
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This equation clearly indicates the way in which the value of each item in the system is made up of values added at each stage of production since the elements of H* include the figures for total requirements making up an item. In multi-echelon inventory theory, first introduced by Clark and Scarf (1960), the value added is referred to as the echelon cost (echelon value). 

If S is the column vector of all stocked items, then vS will be the total value of inventory. Hence, this value may be written:

vS = cH*S = 
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The vector 
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 is then referred to as the echelon stock. Therefore this theory also easily indorporates these important concepts. 

5.
The Laplace Transform Applied for Different Purposes

Input-Output Analysis has been applied to multi-level production-inventory systems for a considerable number of years. An important development has been to incorporate lead times into MRP and Input-Output models. This has been accomplished by using the Laplace transform (or the corresponding z-transform in discrete time models). Basic developments can be found in Grubbström and Ovrin (1992), Grubbström and Molinder (1994) and Molinder (1995). Current research includes especially safety stock considerations in stochastic systems, cf. Grubbström (1998). Other topics such as lot-sizing policies on lower levels or the response of nervousness in MRP (rescheduling issues) are also promising areas in which further studies have commenced (Tang, 1997, Grubbström and Tang, 1998). 

The Laplace transform has been used for describing time developments and lags of the relevant production, demand and inventory variables in a compact way including effects of order flows and lead times. Secondly, the transform has functioned as a moment-generating function, and thirdly, the transform has been applied for assessing cash flows adopting the net present value (NPV) principle (or the annuity stream, which is a variation of the NPV). This has made the analysis compact and distinct (Grubbström, 1967, 1998, Grubbström and Jiang, 1990, Grubbström and Lundquist, 1977, Thorstenson, 1988).

The Laplace transform of a time function x(t), t ( 0, where 
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 being the imaginary unit), is defined as
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showing two notation methods. For texts on the different applications of the Laplace transform reference can be made to Churchill (1958, 1960), Grubbström (1967), Grubbström and Jiang (1990)

The Laplace transform has been introduced for three separate purposes simultaneously, namely for time developments and lags, as a moment-generating method, and for assessing economic consequences (cash flows). The transform enables the use of theorems and short-cuts, such as the time integration 
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. These and many other simple algebraic manipulations provide several advantageous opportunities for the successful application of the transform. 

Secondly, if
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 is the transform of a probability density function of a stochastic variable X, all moments are generated by taking limits of the derivatives:
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Thirdly, as objective functions in production-economic models different alternatives are suggested in the literature. For our purpose it has been convenient to apply a net present value (NPV) approach or the equivalent annuity stream principle. The annuity stream refers to the level of a hypothetical constant cash flow generating a given NPV. The traditional average cost approach can be interpreted as a first-order approximation in the interest rate of the annuity stream expression (Grubbström, 1980). For a cash flow C(t), using the continuous discount rate (, the net present value is defined as:
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This expression is identical in form with the definition of the Laplace transform in Eq. (8). If the complex frequency s is replaced by the continuous interest rate (, the present value can simply be expressed in terms of the transform of the cash flow. Consequently, this method often offers a more direct way to formulate the objective function for optimisation purposes. 

6.
The Fundamental Equations of MRP Theory

In this context production on different levels is assumed to take place in batches of possibly different sizes at different points in time. Cumulative production of an item then follows a staircase function. We assume there are N items in the system as a whole. Demand D, stock S and production P (including purchases) are then N-dimensional column vectors each being a function of time. These vectors are turned into Laplace transforms denoted by tildes or by [image: image33.wmf]{
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For the production (assembly) of one unit of item j, there is a need in the amount of 
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 describing the product structures of all relevant products. In this theory, the lead times 
[image: image42.wmf]N

t

t

t

,

...

,

,

2

1

, are represented by a diagonal matrix 
[image: image43.wmf]t

~

, the lead time matrix, having 
[image: image44.wmf]j

s

e

t

 in its jth diagonal position, which accounts for the time translation of the requirements. The matrix 
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 is the generalised input matrix and it captures component requirements together with their required advance timing. For the example of Figure 1, we obtain the following matrices when the lead times for the assembly of A, E, B, C and D are set to 14, 12, 10, 8 and 6 time units, respectively:
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The consequence that a square matrix can be designed capturing amounts as well as their advance timing is a most significant result justifying efforts made and to be pursued for advancing this theoretical line of development.

Interpreting the factor 1/s as creating a time integration, total inventory 
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Deliveries concern items that are demanded externally. Deliveries from inventory occur as soon as there is a demand of an item not previously satisfied and there is a supply to meet this demand, i. e. that this demand can be covered from available inventory.

Available inventory 
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The production plan will be infeasible if available inventory at any time happens to be negative (as a time function) and this non-negativity of R(t) (in each of its components) is the main set of constraints of this class of problems.

Internal demand must always be met, but if external demand cannot be met, we assume that external demand is either backlogged and satisfied at the time available inventory starts to become positive once again (when a batch is completed) or that the sales are lost. 

Allocated component stock [image: image59.wmf]~
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 is defined as the difference between (total) inventory and available inventory. This stock of items is reserved for production and becomes part of work-in-process
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where A(0) = S(0) ( R(0). Backlogs 
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Eliminating 
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For any item, its available inventory and its backlog cannot be positive at the same time, since a delivery takes place from available inventory as soon as there is an unsatisfied external demand. Therefore R(t) and B(t) have transforms that may be written: 
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These are the transforms of non-negative truncations of the time functions corresponding to the argument, when defining cumulative production as well as cumulative external demand to be zero at time t=0. Total inventory, being the sum of available inventory and allocated component stock, then obeys
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The Lot-for-Lot lot-sizing policy (L4L) involves production decisions on lower levels in exactly the amounts that are required by internal demand at the time this demand occurs. If production of externally demanded items is given, then so is internal demand creating additional internal demand on still lower product structure levels. The L4L policy normally requires that the product structure is of the assembly type. 

If the number of end items is denoted by 
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The summation of the geometric series 
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 converges in a finite number of terms due to the triangular nature of 
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 has the same principal structure as the Leontief inverse in Input-Output Analysis. Since 
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7.
Capacity Requirements and Capacity Limitations

By incorporating Capacity Requirements Planning (CRP) into a manufacturing planning system, the original input matrix needs to be extended to contain information of capacity requirements in addition to the product structure, cf. Segerstedt (1995, Ch. 3). This is done by adding one row to the input matrix for each type of capacity, thus considering units of capacity as additionally required items as shown above. 

Let there be M work stations (capacities) for the production of the items considered. Units of capacity used when manufacturing each item j=1, 2, ... , N  are then described by elements 
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Firstly, we consider a stationary model where the available capacity limitations (as well as possibly import restrictions of volumes of other items) are given by a non-negative column vector L. With x as the non-negative activity vector, y as net production (having no sign limitations) and G an extended output matrix, the opportunities for the system are then constrained by: 
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Disregarding fixed costs etc. and assuming the values (prices, unit costs) to be captured by the row vector v, profits V will be: 
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Maximising V by a suitable choice of the non-negative decision vector x subject to the resource constraints
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, captures a very general class of stationary linear production models.

Turning to the dynamic extensions of our theory, direct materials as well as capacity requirements for the production of end items in the form of the transformed production vector 
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 etc. Assuming an L4L policy, the total material and capacity requirements (including final end items) for the end item production 
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where 
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 is an 
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 contains the lower M rows of H. The capacity requirements have here been allocated at the beginning of the respective lead times, an assumption easily modified if necessary.

In our example of a product structure taking capacity requirements of X and Y (two work stations) into account, items A and E are end items, B, C and D are subordinate items and X and Y are capacities. We therefore have N=5, 
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 and M=2. Choosing a horizon of 100 time units and 10 units of end item A to be produced at time 50 and 5 units of end item E to be produced at time 60 for exportation from the system, the export vector 
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The matrix 
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The resulting cumulative production/capacity levels 
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, k = 1, 2, ... , N+M, are easily turned into graphical staircase functions. 

Recently, work has started on incorporating dynamic capacity limitations into the theory (Wang and Grubbström, 1999).

8.
Stochastic Properties derived from the Laplace Transform

The uncertainty in external demand faced by a production-inventory system can often be described by a renewal process, in which the demand is created by unit events separated by independent stochastic time intervals having the same but independent probability density functions (pdf) f(t), t ( 0. In two previous papers (Andersson and Grubbström, 1994, Grubbström, 1996) efforts have been made to study the stochastic properties in terms of the Laplace transform. The following theorem regarding a renewal process with the pdf f(t) applies:

If cumulative production at time t is 
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 then, during the time that cumulative production remains at 
[image: image108.wmf]P

, the level of expected stockouts E(B(t)) for the item will be part of the function 


[image: image109.wmf]{

}

þ

ý

ü

î

í

ì

-

=

=

+

-

-

))

(

~

1

(

)

(

~

))

(

~

(

E

))

(

(

E

1

1

1

s

f

s

s

f

£

s

B

£

t

B

P

.
(21)

This theorem is valid for any kind of distribution functions of the time interval. The inverse transform can be evaluated by Cauchy's Residue theorem (cf. Churchill, 1958, 1960) or acquired from transform tables for simple expressions due to the one-to-one relationship between the time function and its transform. In the simplest case, when the time intervals are exponentially distributed with 1/( as their common mean (the Poisson process), the pdf and corresponding transform will be
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Using the theorem presented above, we have the expected stockouts
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and their inverse transform 
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The stockout theorem can be applied for more general kinds of probability functions, such as the Gamma-distributed time interval (Grubbström and Tang, 1997). Recently some results have been made generalising the stockout function to general compound processes (Tang and Grubbström, 1999).

9.
Safety Stocks from Maximising the Net Present Value

Let us use a single item system to illustrate the safety stock determination by considering a case with stochastic demand and backlogging for external demand being allowed. The cash flow associated with the process is interpreted as being made up of following payments. On the revenue side, there is an in-payment r per sold unit at the time of each sale. The demand pattern D(t) having the transform 
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 is cumulative production after completion of the kth batch. The objective function will thus be:


[image: image120.wmf][

]

))

(

~

(

E

))

(

~

(

E

NPV

r

r

r

B

D

r

-

=



EMBED Equation.3[image: image121.wmf]å

=

-

-

-

+

-

n

k

t

k

k

k

e

P

P

c

K

1

1

))

(

(

r

.
(25)

The decision variables in the production-inventory system are interpreted as the times tk and cumulative production levels 
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. The safety stock is defined as the difference between the cumulative production level 
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 less expected cumulative demand 
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 at time tk. A detailed development of the optimisation conditions is given in Grubbström (1996). When extending this model to a multi-item system, we need to take into account the internal demand relationships. If the lower-level production follows an L4L policy, the associated production costs are easily obtained using the generalised Leontief inverse. The optimisation conditions remain basically the same. Other lot-sizing rules on lower levels are also possible to capture.

Numerical examples have been used to study safety stock properties (Grubbström, 1996, Grubbström and Tang, 1997). After solving the optimisation conditions, an optimal sequence of production decisions in the form of a staircase function is obtained. The following properties have been found. First, safety stock increases monotonically with time for a demand renewal process. In particular, the optimal safety stock follows a linear relationship with the square root of time. This numerical result has indirectly verified the theory that expected stockouts and expected inventory eventually will follow a time development according to the square root of time and that they are proportional to the standard deviation of the time interval (Andersson and Grubbström, 1994). Another finding is the circumstance that the safety stock is relatively insensitive to the planning horizon. This provides an opportunity to predict the optimal long run safety stocks using data from a short period. 

10.
Summary and Suggestions for Future Studies

This presentation has attempted to provide an overview over theoretical developments of multi-level, multi-stage production inventory systems for which Input-Output Analysis combined with the Laplace transform has been a useful methodology. The input matrix has been generalised to capture timing as well as required amounts of components. The transform has dealt with three issues simultaneously, namely to treat differential equations of the development of stocks and flows and the time lags (lead times) involved, to act as a moment-generating function and for use as an economic evaluation principle (the net present value shortcut). The Leontief inverse had a natural generalisation taking into consideration the timing of factor requirements on different levels. The NPV approach in some respects involves a simpler and more direct path for evaluating economic consequences. Also it may be considered as a superior criterion from an economic-theoretic point of view.

Efforts have been made to create a theoretical background for the practical operation problems in MRP systems (L. Bogataj, Grubbström and M. Bogataj, 1998). The framework introduced has been used and extended by authors in different directions to interconnect with other fields, such as game theory (cf papers by L. Bogataj, M. Bogataj, L. Horvat, 1996-98). Concerning possible future study areas for more complex multi-level production-inventory problems using the Input-Output Analysis/Laplace transform approach, a number of issues have been suggested:

Items which also have been investigated are rescheduling, to some extent safety lead times, other product structures than assembly structures, control theory relationships including multi-item feedback systems in combination with Petri-net methodology (Bonney and Popplewell, 1987, 1988, Hennet, 1998) and applications to spatial problems (Bogataj and Bogataj, 1997, 1998, 1999). 
Future issues of the theory will be directed towards rescheduling, work-load manufacturing control, internal stochastic disturbances, and extensions of capacity requirements planning. 
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