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Abstract

A state-space model has been developed for multistation production systems to determine the exact distribution of the number of parts produced in a given time period and the distribution of the time to produce  a given number of parts conditioned on the initial condition of a manufacturing system.  By using the latter distribution, the distribution of the total time a part spends in a production system, i.e., the cycle time distribution, is also determined.  Asymptotic results for these distributions are also given.  An algorithm is developed to generate the state-transition matrix automatically for discrete material manufacturing systems when the system parameters, production system structure and operational rules are given.  Numerical results are given for exact analysis of output variability in multistation production lines.
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1. Introduction
Most of the studies related to the performance evaluation of production systems have been focused on determining the average measures such as the production rate and expected WIP levels.  However, variability around the average performance is also very important to design and control production systems in a more effective way.  Analysis of variability from production systems attracted some attention in recent years.  For a review of the recent pertinent literature, the reader is referred to (Tan, 1999a).

The main contribution of this study is the generality of the method and its outputs.  A wide range of manufacturing systems can be analzyed by the method presented. Furthermore, exact distributions of the number of parts produced and time to produce a given number of parts are obtained.  A number of performance measures based on these distributions can be derived.

In this study, we consider discrete material flow manufacturing systems that can be modeled as Markov chains.    A state-space model has been developed for multistation production systems to determine the exact distribution of the number of parts produced in a given time period and the distribution of the time to produce a given number of parts conditioned on the initial condition of a manufacturing system.  By using the latter distribution, the distribution of the total time a part spends in a production system, i.e., the cycle time distribution, is also determined.  

By using this analysis, one can answer questions such as “What is the expected time for a new order to be completed?,” “What is the probability that the current orders will be shipped by their due-dates”, “What is the expected number of parts to be produced today?,” etc. given which stations are up and which stations are down and the number of parts in the buffers at a specific time.  This analysis can be exploited both to design a production system, i.e., to decide on number of stations, buffer capacities, allocation of buffer capacities, the production system structure, etc. and also, during the operation, to decide on operational rules, to set due-dates, to decide on over-time, etc.  

Furthermore, an algorithm is developed to generate the state-transition matrix automatically for discrete material manufacturing systems when the system parameters, production system structure and operational rules are given.  

Combining the algorithm to generate the state-space and transition matrix with the performance evaluation algorithm that takes a transition matrix as its input allows us to analyze a wide range of production systems.

In this study, this method is utilized to analyze multistation transfer lines with interstation buffers.  By exploiting the repeating block tridiagonal structure of the state transition matrix, the above-mentioned distributions and some performance measures including the ones related to the due-date performance are obtained.  Numerical results are given for exact analysis of output variability in multistation transfer lines.  Several numerical experiments are conducted to derive insight from the results regarding the effects of transfer line design and operation on the performance of the line.

The organization of the remaining part of this paper is as follows.  We present the general structure of the method in §2.  The algorithm developed to generate the state space and the state transition matrix automatically is discussed in §3.  Similarly, the algorithms developed to determine the exact distributions of interest and the related performance measures are given in §4.  We present some numerical results for multistation transfer lines in §5.  Finally, conclusions and discussions are given in §6.

2. General Structure of the Model

The method we present is consisted of two main parts: A model builder block and a performance evaluation block.  Figure 1 below depicts the block diagram of the model.

The model builder block takes system structure, system parameters, and operational rules as inputs.  Given this information, the model builder generates the state-space and the state-transition probability matrix automatically.

Once the state space, probability matrix, and the reward function are generated, the performance evaluation block determines the performance measures of interest by using the algorithms provided.
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Figure 1.  Block diagram of the methodology

3. Model Builder

The state-space based methods in the literature take the approach of generating the probability matrix and then analysing the probability matrix for the performance measures of interest.   Miltenburg (1987) requires that the probability matrix should be given explicitly.  However, it is extremely time consuming to generate the state-space and then to build the probability matrix manually.  An early study by Schick and Gershwin (1978) discusses generation of the probability matrix of multistation production lines by using the nested tridiagonal structure of the probability matrix.  Papadopoulos and O’Kelly (1989), Papadopoulos et. al. (1989) and Vidalis and Papadopoulos (1997) generate the transition matrix of a multistation production line recursively by exploiting the nested block tridiagonal structure of the underlying quasi birth and death process.  Namely, the repeating structure of the submatrices is used and the probability matrix is formed by using the submatrices explicitly given.  These methods also require that the state space and submatrices are given.

In this study we follow an alternative route to generate the state space ad the probability matrix automatically.  More specifically, our objective is to develop a Model Builder Block that takes system structure, system parameters, and operational rules as inputs and then generates the state space, the probability matrix and the reward function.  The system structure includes the information on how the stations are interconnected, where the buffers are located, etc.  The system parameters contain buffer capacities, the number of stations, failure, repair probabilities, etc.  The operational rules indicate what blocking mechanism is to be used, how the failure mechanism works, and what conventions are used to update the system when a station fails, when the buffer level changes, etc.  Given this information, the model builder generates the state-space and the state-transition probability matrix automatically.

A similar approach has been taken to develop the software tool SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) that allows its users to construct and analyze performance, reliability, availability, and performability models, especially for computer systems (Sahner, Trivedi, and Puliafito, 1996).  Stewart (1994) also presents a tool to generate and analyze Markov models of discrete-event systems.  This study is a first step towards developing a similar environment for performance evaluation of production systems.

In the model builder block, we start our state-space generation from a given state, say, from the state where the stations are up and the buffers are empty.  We include this state in our state space which is an empty list initially.  Then for all possible changes in the machine states, we determine the changes in the buffer levels according to the operational rules.  By combining the new machine states and the buffer levels, we construct the next state.  If this new state is not included in the state-space then it is included.  Then the transition probability is calculated according to the operational rules.  Finally, we store the index of the current state, the index of the new state, and the transition probability.  We continue this procedure with the next state in the state space until all the states in the state space are taken.  As a result, we build the state space and the probability matrix.  When the station of interest or the performance measure of interest are given, we then form the reward matrix from the state space.  For example, if the production rate is of interest and if we want to determine the production rate of the first station, then we choose the states where the first station is up and not blocked.  Denoting the chosen states with one and the others with zero yields the desired reward function. 

4. Performance Evaluation Block

The performance evaluation block determines the exact distribution of the number of parts produced during [0, t), N(t), the exact distribution of the time to produce n parts, Tn, and the distribution of cycle time, CT, once the state space and the state transition matrix are supplied.  After determining these distributions, a number of performance measures such as the mean and the variance of these random variables and the probabilities of certain events such as the probability of meeting the due date, etc. can be derived exactly from these distributions. 

The algorithms used in the performance evaluation block have been developed and presented in previous studies.   Tan (1998) presents the algorithms to determine the exact distributions of N(t) and Tn.   The distribution of Tn is derived from the distribution N(t) by using the one-to-one relationship between the processes {N(t), t=0,1,…} and {Tn, n=0,1,…}.  Furthermore, if the WIP inventory is m at a given time, the time a new part will spend in the system, i.e., the cycle time, is equal to the time to produce m+1 parts Tm+1.  Thus the distribution of the cycle time can be obtained from the distribution of the time to produce a given number of parts.  Furthermore, the mean and variance of the random variables of interest can be determined exactly from these distributions.  

Alternatively, E[N(t)] and Var[N(t)] can also be determined exactly without determining the exact distribution of N(t).  Tan (1999b) presents a state-space based algorithm to determine E[N(t)] and Var[N(t)] directly.  Furthermore, it is shown that the distribution of the N(t) is asymptotically normal.  Therefore, the distribution of N(t) can be approximated with a normal distribution with mean E[N(t)] and variance Var[N(t)]. 

The asymptotic results have been used in performance evaluation extensively.  The asymptotic mean and variance rate of N(t) are defined as,  
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respectively.  Tan (1999a) presents an efficient algorithm to determine E and V directly from the state space model.  Furthermore, it is shown that the distribution of the N(t) is asymptotically normal.  Thus one can use E and V to approximate both E[N(t)] and Var[N(t)] as Et and Vt and also to approximate the distribution with a normal distribution with mean Et and variance Vt.
According to the time span desired, one of the above algorithms can be used in the performance evaluation block.   Let ns be the number of states in the state space.  The complexity of determining the exact distribution of N(T) is O(ns2(T2).  The complexity of determining only E[N(T)] and Var[N(T)] is O(ns2(T).  Finally we can determine E and V with complexity O(ns2).  Therefore there is a tradeoff between the accuracy of the results and the computational complexity.

Namely, if the performance of the system in a short time period is desired, then the exact distributions should be obtained.  If the performance of the system in the long run is of interest then, E and V should be obtained first.  Similarly, if the performance of the systems in a medium range is to be analyzed, then mean and variance at time t should be obtained first.  Then the other performance measures of interest can be obtained from these results.  The relationship between direct calculation and then obtaining approximations is depicted in Figure 1 by showing the exact links with a solid line and approximations with a broken line.

5. Numerical Results

In this section we present some preliminary results for multistation transfer lines. We consider models that operates according to the assumptions given in (Gershwin, 1994): It is assumed that there is an infinite number of parts upstream of the first station and an unlimited storage area is present downstream of the second station, i.e., the first station is never starved and the second station is never blocked.  Both machines have equal and constant processing times.   Processing rate of the stations are taken as one without loss of generality.  All operating machines start their operations at the same instant.  Failure and repair times are assumed to be geometrically distributed with rates pi and ri respectively.  Machines fail only while processing parts.  For the other assumptions and conventions see (Gershwin, 1994: 71).

Figure 2 shows the exact and approximate distributions of the number of parts produced in [0, T) for a specific two-station production line that operates according to the assumptions given in (Gershwin, 1994). As expected the exact distribution approaches the normal distribution as time gets larger.  From the figure, it looks like the normal approximation with mean E[N(t)] and Var[N(t)] works well for both cases while the normal approximation with mean E(t and V(t works well for the second case, or equivalently, as t gets very large.  
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Figure 2.   Exact and approximate distributions of the number of parts produced in [0, T). p1 = 0.2, r1 = 0.9,    p2 = 0.1, r2 = 0.8,  M  = 10, Initially machine 1 and machine 2 are up, there are 3 parts in the buffer.
Figure 3 illustrates the conditional cycle time distribution for a four-station line.   Figure 4 shows the exact distribution of the number of parts produced in [0, T) for a specific four-station production line.  Figure 5 depicts E[N(t)]/t and Var[N(t)]/t for the same production line for two different interstation buffer capacities.  Figure 6 shows the distribution of the time to produce a given number of parts for a specific three-station line. 
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Figure 3.  Distribution of the conditional cycle time for a four station production line pi=0.1, ri=0.9,   BCi=5, i=1, 2,  3, 4.   Initially all the stations are up and there is one part in each buffer.
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Figure 4.  Distribution of the number of parts produced during [0,t), N(t), for t=10, 50, 75, 100 for a four station transfer line with pi=0.1, ri=0.9,   BCi=15, i=1, 2, 3, 4.   Initially all the stations are up and there is one part in each buffer.
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Figure 5. E[N(t)]/t and Var[N(t)]/t for a four-station transfer line:  pi=0.1, ri=0.9,   BCi={3, 15}, i=1, 2, 3, 4. 
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Figure 6.  Distribution of the time to produce n parts, Tn, for n=5, 10, 20, 40 for a three station transfer line with pi=0.1, ri=0.9,   BCi=5, i=1, 2,  3.   Initially all the stations are up and there is one part in each buffer.

6. Conclusions

In this study we present a general state-space model for exact-analysis of output from discrete material flow manufacturing systems.  More specifically, we combine a model builder block that generates the state space, the probability matrix, and the reward function with a performance evaluation block that determines the exact distributions of the number of parts produced in a given time period and the time required to produce a given number of parts.  The objective is to develop a methodology to analyze a wide range of systems with the same methodology.

Similar to all state-space methods, computational requirements suffer from rapid increase of the states depending on the number of stations and buffer capacities.  Therefore, the proposed method cannot be used effectively to evaluate the performance of, say, a 50-station production line.  However, note that single buffer production lines have been analyzed thoroughly to understand the operation of the production system and also to use this easy-to-solve subsystem to decompose more complex production systems.  The method presented in this study extends the same approach to more generalized subsystem evaluation.  We can gain insights from the operation of more complicated. Moreover, approximation methods that evaluate the performance of a manufacturing system by decomposing the system into tractable subsystems can be developed. 

Furthermore, if a short time period is of interest, then only the part of a production system that currently contains the number of parts that can be produced during this time can be analyzed in isolation.  For example, consider the 50-station production line depicted in Figure 7. If the performance of a  50-station production line during [0, T), T=30 is of interest then the maximum number of parts that can be produced in this time period is 30. 



Figure 7.  A 50-station production line and its decomposition

Let us assume that stations 47, 48, 49, 50 are up and Buffers 47, 48, and 49 currently contain 12, 6, and 14 parts respectively.  Then analyzing a subsystem of a four-station line which is consisted of Station 47, 48, 49, and 50 during [0, 30) yields the desired results for the whole system.

We believe that there is a need to develop a software environment to construct and analyze performance of a wide range of production systems.  Further research is needed to specify the inputs of the model builder block in a unique way and to standardize how this block interacts with the performance evaluation block.
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