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Abstract

Ramadge-Wonham (RW) framework for designing a supervisory controller for a given plant and user specification, has been widely addressed by many researchers. The framework accepts a generator (or plant model), 
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, and a specification (or imposed constraint on the plant), 
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, and generates the supervisory controller, 
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. It assumes that plant is known and deterministic. However, in many practical cases the designer is not completely aware of the real generator 
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. In this paper the above assumption is removed. It is assumed that 
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 is not fully known. Using the available 
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and the user specification 
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, RW procedure is applied to a supervisor 
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. Then the family of (real) generators, 
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, which can be supervised under 
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 while satisfying the specification 
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is introduced and different cases are discussed. We establish the mathematical framework for one of the cases where an event originally controllable becomes uncontrollable.  It is argued that the complement of 
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 which violates the specification 
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can be partially synthesized by available recovery and diagnosis techniques in RW literature if the violation is already known. Otherwise the violated specification must be handled in run time. 

1.0  INTRODUCTION

Ramadge-Wonham (RW) framework for designing the supervisory control of discrete event systems accepts the plant model and the user specification, and generates the supervisory controller [1,3,4,5,6,7]. The generated controller is maximally permissive, and is live. It guarantees correctness and non-blocking properties, which make the method unique in comparison with the other available approaches in the literature (e.g. Petri Nets and Formal Languages [21]). The initial version of RW method, introduced by Ramadge and Wonham [6,7,4], made the following assumptions: 1) Plant is deterministic, 2) Plant events can be fully observed, 3) The devices used to collect information on the plant events are not subject to failures, 4) Plant must be controlled by a single agent (centralized control assumption) and 5) Plant model is fully known or correct. Assumptions one, two and four have already been relaxed by a number of researchers. Non-deterministic plant models [8,9] have been investigated using different techniques like trajectory models and failure semantics. The relaxation of the second assumption yields another class of supervisory control problems, Supervisory Control under Partial Observation, which has been fairly discussed by many [10,11,12,13,18]. Decentralized supervisory control, introduced by Lin and Wonham [17], has also been discussed in the literature [14,15,16]. However, the relaxation of assumptions three and four has not been addressed yet. In this paper we address the issues around relaxing assumption four. We assume that the supervisor is originally designed under only partial knowledge of the plant behavior. 

It should be noted that the discussion here is different from diagnosis of discrete event systems originally addressed by Lin [19,20].  There, a correct and a complete knowledge of the plant is assumed including fault or abnormal states which are the subset of plant states. Therefore, at the time of failures, the controller already has embedded in it the set of appropriate transitions to follow. In our case, such a priori knowledge is not assumed and not embedded in the model. What we are suggesting is that the supervisory controller should be able to adapt itself to unknown events or to failures in the sensory devices in some autonomous manner. Every time that such an event occurs the supervisor must determine if its laws in terms of enabling and disabling of the events in the plant are still appropriate (conforming to control specification) under the new conditions. If not appropriate then the supervisory control laws must be modified. There are always some events which if occur would result in the shut down of the system and can only be resolved by a manual intervention. The main issue is to find the set of events and conditions under which the adaptation can be done within the supervisory controller itself, and outside there must be some manual intervention.

2.0 BACKGROUND REVIEW

Consider the plant generator defined in [7]: 
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 is the set of states, 
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 is the alphabet (event) set, 
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shows the transition function such that 
[image: image18.wmf]Q

Q

®

´

S

:

d

, 
[image: image19.wmf]q

0

 is the plant initial state and 
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is the set of marked states where 
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. The set of events is divided to two disjoint subsets: 
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 the set of controllable events and 
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the set of uncontrollable events such that: 
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 be the closed language 
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, which includes all possible strings that can be generated by the plant. Suppose that the specification imposed on the plant divides the plant language to two sets of strings: the legal language
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and the illegal language 
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 be a complete supervisor obtained by the procedure given from Ramadge and Wonham [6,7] where 
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. We define 
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 as the corresponding coupled language i.e. 
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. The following results are given in the literature: 

1- 
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are closed [6,7].

2- The coupled language 
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 is closed and non-blocking, proper and non-rejecting [7].

3-  Suppose 
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 3.0 The Problem of Supervisory Control Under Incomplete Plant Model

Consider the coupled system of figure 1 constructed by RW method (figure 2). In this system supervisor
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 observes the events generated by plant
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 and sends the feedback policy
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to the plant. Feedback policy includes enabling and disabling of controllable events. We modify the above supervisor by assuming that 
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may not be correct or complete. In other words, 
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the true plant model is assumed to be unknown at the time of designing the supervisor. There is no guarantee that 
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is a subset of the legal language if 
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. Two questions arise here: 1) Does the real coupled system (figure 3) violates 
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? 2) If it does, how one must modify 
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? To answer the first question, we define set 
[image: image53.wmf]R

:
[image: image54.wmf]{

}

H

G

L

G

R

P

p

c

Í

=

)

/

(

:

S

.
[image: image55.wmf]In other words, 
[image: image56.wmf]R

 is the set of all generators coupled with 
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 such that the supervised plant language is still in 
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. We refer to
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 as the set of legal generators. Therefore if 
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 should be somewhat revised to obtain a new supervisor
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A generic supervisory control model for the above problems is represented by figure 4.  The model is different from regular feedback system (figure 1) by a new meta supervisory level. In this level we observe the real plant events, compare them with the originally known plant events (or 
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). If the behavior is different from that of 
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 and it does not belong to 
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, then the meta supervisor computes a new control policy such that the real system remains in the specification 
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; otherwise, it has no effect on the original closed loop system given by figure 1.

To implement the meta model in the above system, the three elements are required: 

1- A monitoring mechanism for observing the actual plant and comparing it with the desired one (element number 1 in figure 4). An ideal mechanism for this would be the one that observes any event including events in 
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or outside 
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. It should be noted that observing an event which does not belong to the predefined set of events 
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, does not mean a violation from 
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, because of the self loop property of the specification language [7], unless, the new event is illegal itself. But, the successor strings to the new event may create an illegal behavior. Therefore it is required for element 1 of the meta supervisor to record all events such that the element 3 could use the new strings for necessary revisions.  Such an observation/comparison scheme may require a very complex sensory network in practice. 

2- Legal behavior verification unit (element number 2 in figure 4): This unit verifies whether the observed behavior is a subset of legal behavior 
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 or not. As mentioned earlier if 
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could be different from 
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in a number of ways:

I. G assumes that an event is controllable but actually it is not, i.e., 
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II. G assumes that an event is uncontrollable but actually it is controllable, i.e., 
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III. A new event is observed leading to a new state

III.      A new event observed leading to an already known state, etc. 
Our general approach to derive 
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 is illustrated by figure 5. The notation 
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. We recall that RW method accepts the generator and 
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, and obtains 
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 (figure 2). 

3-Supervisor revision module: In the case of violation from 
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, it is necessary to modify the current supervisor. We propose two steps for this stage. First the plant should be returned back to a legal state (if it is already in an illegal state). Second the supervisor should be revised and reset such that the violation never happens again. Unfortunately, in practice the violation is not already known. Therefore step one can only be handled in run time. In other words, it would be impossible to formulate a general policy for step one. The reader notices that if the violation is already known then the problem becomes the regular diagnosis problem, which has been addressed [19,20]. 

3.1 Computation of R

Here we will only discuss this for the case 
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. In the supervisor obtained as such, delete any blocking state (this can be done by the procedure introduced by Ramadge and Wonham [6]). 
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4.0 CONCLUSION AND FUTURE WORK

Recovery problem, a new framework for RW supervisory control problem while the real plant is unknown, was introduced.  Due to fair mathematical structure of RW method it was possible to develop the theoretical basis of recovery problem. We established the class of non-sensitive generators with respect to change in controllability and uncontrollability of an event. Our research continues on the other cases. Furthermore, we examine cases where only partial observation of events is possible.
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Figure 2.  RW Design
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Figure 3. Real Feedback Loop
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Figure 5.  Inverse Design
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Figure 1.  Designed Feedback Loop
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Figure 4.  Recovery Model
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