Supervisory Control Under Incomplete Plant Model

Houshang Darabi

Mohsen A. Jafari

Department of Industrial Engineering

Rutgers University

96 Frelinghuysen Rd.

Piscataway, NJ 08854-8018

Houshang@eden.rutgers.edu
Jafari@rci.rutgers.edu

Abstract

Ramadge-Wonham (RW) framework for designing a supervisory controller for a given plant and user specification, has been widely addressed by many researchers. The framework accepts a generator (or plant model),
[image: image1.wmf]G

, and a specification (or imposed constraint on the plant),
[image: image2.wmf]H

, and generates the supervisory controller,
[image: image3.wmf]S

. It assumes that plant is known and deterministic. However, in many practical cases the designer is not completely aware of the real generator
[image: image4.wmf]G

R

. In this paper the above assumption is removed. It is assumed that
[image: image5.wmf]G

 is not fully known. Using the available
[image: image6.wmf]G

and the user specification
[image: image7.wmf]H

, RW procedure is applied to a supervisor
[image: image8.wmf]S

. Then the family of (real) generators,
[image: image9.wmf]}

{

G

R

, which can be supervised under
[image: image10.wmf]S

 while satisfying the specification
[image: image11.wmf]H

is introduced and different cases are discussed. We establish the mathematical framework for one of the cases where an event originally controllable becomes uncontrollable. It is argued that the complement of
[image: image12.wmf]}

{

G

R

 which violates the specification
[image: image13.wmf]H

can be partially synthesized by available recovery and diagnosis techniques in RW literature if the violation is already known. Otherwise the violated specification must be handled in run time.

1.0 INTRODUCTION

Ramadge-Wonham (RW) framework for designing the supervisory control of discrete event systems accepts the plant model and the user specification, and generates the supervisory controller [1,3,4,5,6,7]. The generated controller is maximally permissive, and is live. It guarantees correctness and non-blocking properties, which make the method unique in comparison with the other available approaches in the literature (e.g. Petri Nets and Formal Languages [21]). The initial version of RW method, introduced by Ramadge and Wonham [6,7,4], made the following assumptions: 1) Plant is deterministic, 2) Plant events can be fully observed, 3) The devices used to collect information on the plant events are not subject to failures, 4) Plant must be controlled by a single agent (centralized control assumption) and 5) Plant model is fully known or correct. Assumptions one, two and four have already been relaxed by a number of researchers. Non-deterministic plant models [8,9] have been investigated using different techniques like trajectory models and failure semantics. The relaxation of the second assumption yields another class of supervisory control problems, Supervisory Control under Partial Observation, which has been fairly discussed by many [10,11,12,13,18]. Decentralized supervisory control, introduced by Lin and Wonham [17], has also been discussed in the literature [14,15,16]. However, the relaxation of assumptions three and four has not been addressed yet. In this paper we address the issues around relaxing assumption four. We assume that the supervisor is originally designed under only partial knowledge of the plant behavior.

It should be noted that the discussion here is different from diagnosis of discrete event systems originally addressed by Lin [19,20]. There, a correct and a complete knowledge of the plant is assumed including fault or abnormal states which are the subset of plant states. Therefore, at the time of failures, the controller already has embedded in it the set of appropriate transitions to follow. In our case, such a priori knowledge is not assumed and not embedded in the model. What we are suggesting is that the supervisory controller should be able to adapt itself to unknown events or to failures in the sensory devices in some autonomous manner. Every time that such an event occurs the supervisor must determine if its laws in terms of enabling and disabling of the events in the plant are still appropriate (conforming to control specification) under the new conditions. If not appropriate then the supervisory control laws must be modified. There are always some events which if occur would result in the shut down of the system and can only be resolved by a manual intervention. The main issue is to find the set of events and conditions under which the adaptation can be done within the supervisory controller itself, and outside there must be some manual intervention.

2.0 BACKGROUND REVIEW

Consider the plant generator defined in [7]:
[image: image14.wmf](

)

Q

q

Q

G

m

,

,

,

,

0

d

S

=

 where
[image: image15.wmf]Q

 is the set of states,
[image: image16.wmf]S

 is the alphabet (event) set,
[image: image17.wmf]d

shows the transition function such that
[image: image18.wmf]Q

Q

®

´

S

:

d

,
[image: image19.wmf]q

0

 is the plant initial state and
[image: image20.wmf]Q

m

is the set of marked states where
[image: image21.wmf]Q

Q

m

Í

. The set of events is divided to two disjoint subsets:
[image: image22.wmf]S

c

 the set of controllable events and
[image: image23.wmf]S

u

the set of uncontrollable events such that:
[image: image24.wmf]S

S

=

S

c

u

U

 and
[image: image25.wmf]f

=

S

S

u

c

I

. Let
[image: image26.wmf])

(

G

L

L

=

 be the closed language
[image: image27.wmf])

(

L

L

=

, which includes all possible strings that can be generated by the plant. Suppose that the specification imposed on the plant divides the plant language to two sets of strings: the legal language
[image: image28.wmf]H

and the illegal language
[image: image29.wmf]H

L

-

. Let
[image: image30.wmf](

)

F

=

,

S

S

 be a complete supervisor obtained by the procedure given from Ramadge and Wonham [6,7] where
[image: image31.wmf])

,

,

,

,

(

0

X

x

g

X

S

m

S

=

. We define
[image: image32.wmf]K

 as the corresponding coupled language i.e.
[image: image33.wmf])

/

(

)

(

G

L

H

SUPC

K

c

S

=

=

. The following results are given in the literature:

1-
[image: image34.wmf]H

L

,

and
[image: image35.wmf]K

are closed [6,7].

2- The coupled language
[image: image36.wmf](

)

G

L

c

/

S

 is closed and non-blocking, proper and non-rejecting [7].

3- Suppose
[image: image37.wmf]K

s

Î

 and
[image: image38.wmf]L

s

Î

s

. Then
[image: image39.wmf]K

s

Ï

s

 if and only if there exits a string
[image: image40.wmf]S

Î

*

u

l

 such that
[image: image41.wmf]H

L

l

s

-

Î

s

[17].

 3.0 The Problem of Supervisory Control Under Incomplete Plant Model

Consider the coupled system of figure 1 constructed by RW method (figure 2). In this system supervisor
[image: image42.wmf])

(

S

 observes the events generated by plant
[image: image43.wmf])

(

G

 and sends the feedback policy
[image: image44.wmf])

(

g

to the plant. Feedback policy includes enabling and disabling of controllable events. We modify the above supervisor by assuming that
[image: image45.wmf]G

may not be correct or complete. In other words,
[image: image46.wmf]G

R

the true plant model is assumed to be unknown at the time of designing the supervisor. There is no guarantee that
[image: image47.wmf])

/

(

G

L

c

S

is a subset of the legal language if
[image: image48.wmf]G

G

R

¹

. Two questions arise here: 1) Does the real coupled system (figure 3) violates
[image: image49.wmf]H

? 2) If it does, how one must modify
[image: image50.wmf]S

 in order to keep
[image: image51.wmf])

/

(

G

L

R

c

S

inside
[image: image52.wmf]H

? To answer the first question, we define set
[image: image53.wmf]R

:
[image: image54.wmf]{

}

H

G

L

G

R

P

p

c

Í

=

)

/

(

:

S

.
[image: image55.wmf]In other words,
[image: image56.wmf]R

 is the set of all generators coupled with
[image: image57.wmf]S

 such that the supervised plant language is still in
[image: image58.wmf]H

. We refer to
[image: image59.wmf]R

 as the set of legal generators. Therefore if
[image: image60.wmf]R

G

R

Î

 then no modification of
[image: image61.wmf]S

 is required. However if
[image: image62.wmf]R

G

R

Ï

then
[image: image63.wmf]H

G

L

R

Ë

)

/

(

S

and
[image: image64.wmf]S

 should be somewhat revised to obtain a new supervisor
[image: image65.wmf]S

R

, such that
[image: image66.wmf]H

G

L

R

R

Í

)

/

(

S

.

A generic supervisory control model for the above problems is represented by figure 4. The model is different from regular feedback system (figure 1) by a new meta supervisory level. In this level we observe the real plant events, compare them with the originally known plant events (or
[image: image67.wmf])

/

(

G

L

c

S

). If the behavior is different from that of
[image: image68.wmf])

/

(

G

L

c

S

 and it does not belong to
[image: image69.wmf]R

, then the meta supervisor computes a new control policy such that the real system remains in the specification
[image: image70.wmf]H

; otherwise, it has no effect on the original closed loop system given by figure 1.

To implement the meta model in the above system, the three elements are required:

1- A monitoring mechanism for observing the actual plant and comparing it with the desired one (element number 1 in figure 4). An ideal mechanism for this would be the one that observes any event including events in
[image: image71.wmf]S

or outside
[image: image72.wmf]S

. It should be noted that observing an event which does not belong to the predefined set of events
[image: image73.wmf]S

, does not mean a violation from
[image: image74.wmf]H

, because of the self loop property of the specification language [7], unless, the new event is illegal itself. But, the successor strings to the new event may create an illegal behavior. Therefore it is required for element 1 of the meta supervisor to record all events such that the element 3 could use the new strings for necessary revisions. Such an observation/comparison scheme may require a very complex sensory network in practice.

2- Legal behavior verification unit (element number 2 in figure 4): This unit verifies whether the observed behavior is a subset of legal behavior
[image: image75.wmf]H

 or not. As mentioned earlier if
[image: image76.wmf]R

G

R

Î

 then we know that the generated language is a subset of
[image: image77.wmf]H

. So it is important to derive
[image: image78.wmf]R

.
[image: image79.wmf]G

R

could be different from
[image: image80.wmf]G

in a number of ways:

I. G assumes that an event is controllable but actually it is not, i.e.,
[image: image81.wmf])

(

s

CU

 EMBED Equation.3 [image: image82.wmf]Û

(
[image: image83.wmf]S

Î

G

c

,

s

and
[image: image84.wmf]S

Î

G

u

R

.

s

),
II. G assumes that an event is uncontrollable but actually it is controllable, i.e.,
[image: image85.wmf])

(

s

UC

 EMBED Equation.3 [image: image86.wmf]Û

(
[image: image87.wmf]S

Î

G

u

,

s

and
[image: image88.wmf]S

Î

G

c

R

.

s

).
III. A new event is observed leading to a new state

III. A new event observed leading to an already known state, etc.
Our general approach to derive
[image: image89.wmf]R

 is illustrated by figure 5. The notation
[image: image90.wmf]RW

1

-

shows that the method attempts to establish all generators, which if coupled with
[image: image91.wmf]S

generate a language in
[image: image92.wmf]H

. We recall that RW method accepts the generator and
[image: image93.wmf]H

, and obtains
[image: image94.wmf]S

 (figure 2).

3-Supervisor revision module: In the case of violation from
[image: image95.wmf]H

, it is necessary to modify the current supervisor. We propose two steps for this stage. First the plant should be returned back to a legal state (if it is already in an illegal state). Second the supervisor should be revised and reset such that the violation never happens again. Unfortunately, in practice the violation is not already known. Therefore step one can only be handled in run time. In other words, it would be impossible to formulate a general policy for step one. The reader notices that if the violation is already known then the problem becomes the regular diagnosis problem, which has been addressed [19,20].

3.1 Computation of R

Here we will only discuss this for the case
[image: image96.wmf])

(

s

CU

. The following lemma obtains the set
[image: image97.wmf]R

for this class. The proof is omitted.

Lemma1:
[image: image98.wmf]K

 is not affected by
[image: image99.wmf])

(

s

CU

, if and only if there is no string
[image: image100.wmf]K

s

Î

such that
[image: image101.wmf]0

)

)](

,

(

[

0

=

F

s

s

x

g

. In other words
[image: image102.wmf])

(

s

CU

does not violate
[image: image103.wmf]H

if and only if
[image: image104.wmf]s

has never become disabled by supervisor
[image: image105.wmf]S

(
Now what happens if the observer in figure 4 observes
[image: image106.wmf]S

Î

G

c

,

s

as an uncontrollable event (a typical case might be when the observer observes string
[image: image107.wmf]s

s

where
[image: image108.wmf]K

s

Î

but
[image: image109.wmf]K

s

Ï

s

). The necessary and sufficient condition discussed in lemma 1 show that any violation from
[image: image110.wmf]H

 is originated by at least one string
[image: image111.wmf]K

s

Î

such that
[image: image112.wmf]0

)

)](

,

(

[

0

=

F

s

s

x

g

. Therefore to obtain the modified supervisor for string
[image: image113.wmf]s

 where
[image: image114.wmf]K

s

Î

and
[image: image115.wmf]0

)

)](

,

(

[

0

=

F

s

s

x

g

 we do the following: let
[image: image116.wmf]s

s

s

n

s

L

2

1

=

 (
[image: image117.wmf]n

is finite because
[image: image118.wmf]L

is regular). Define
[image: image119.wmf]{

}

S

Î

Ù

£

£

=

c

i

n

i

i

r

s

1

:

max

. In other words,
[image: image120.wmf]s

r

 is the last controllable event in the sequence
[image: image121.wmf]s

s

s

n

L

2

1

 (if
[image: image122.wmf]r

does not exist then
[image: image123.wmf]K

 is null because
[image: image124.wmf]L

s

Î

s

and
[image: image125.wmf]H

s

Ï

s

). Change the feedback rule from
[image: image126.wmf]1

)

)](

,

(

[

1

2

1

0

=

F

-

s

s

s

s

r

r

x

g

L

to
[image: image127.wmf]0

)

)](

,

(

[

1

2

1

0

=

F

-

s

s

s

s

r

r

x

g

L

. In the supervisor obtained as such, delete any blocking state (this can be done by the procedure introduced by Ramadge and Wonham [6]).
[image: image128.wmf]G

[image: image129.wmf]H

[image: image130.wmf]S

[image: image131.wmf]S

[image: image132.wmf]G

R

[image: image133.wmf]s

[image: image134.wmf]g

4.0 CONCLUSION AND FUTURE WORK

Recovery problem, a new framework for RW supervisory control problem while the real plant is unknown, was introduced. Due to fair mathematical structure of RW method it was possible to develop the theoretical basis of recovery problem. We established the class of non-sensitive generators with respect to change in controllability and uncontrollability of an event. Our research continues on the other cases. Furthermore, we examine cases where only partial observation of events is possible.

5.0 REFERENCES

[1] F. Lin, A. F. Vaz and W.M. Wonham, “Supervisor specification and Synthesis for Discrete Event Systems”, Int. J. Control, vol. 48, no. 1, pp. 321-332, 1988.

[2] L. Yong and W.M. Wonham, “On Supervisory Control of Real-Time Discrete –Event Systems”, Proceedings of the American Control Conference, pp.1715-1720, 1987.

[3] W. M. Wonham and P. J. Ramadge, “Modular Supervisory Control of Discrete-Event Systems”, Maths. Contr., Signals Syst., vol. 1, no. 1, pp. 13-30, 1988.

[4] P. J. Ramadge and W. M. Wonham, “Modular Feedback Logic for Discrete Event Systems”, SIAM J. Control and Optimization, vol.25, no. 5, pp.1202-1217, 1987.

[5] W. M. Wonham, “ A Control Theory for Discrete- Event Systems”, NATO ASI Series, Vol. F47, pp. 1-21, 1988.

[6] W. M. Wonham and P.J. Ramadge, “ On the Supremal Controllable Sublanguage of a Given Language”, SIAM J. Control and Optimization, vol.25, no.3, pp.637-657, 1987.

[7] P. J. Ramadge and W. M. Wonham, “Supervisory Control of a Class of Discrete Event Processes”, SIAM J. Control and Optimization, vol.25, no.1, pp.206-230, 1987.

[8] A. Overkamp, “Supervisory Control Using Failure Semantics and Partial Specifications”, IEEE Trans. Auto. Control, vol.42, no. 4, pp. 498- 510, 1997.

[9] M. H. Heymann and F. Lin, “Discrete-Event Control of Non-deterministic Systems”, IEEE Trans. Auto. Control, vol.43, no.1, pp. 3-17, 1998.

[10] T. Ushio, “On the Existence of Finite-State Supervisors Under Partial Observations”, IEEE Trans. Auto. Control, vol.42, no. 11, pp.1577-1581, 1997.

[11] F. Lin and W. M. Wonham, “Supervisory Control of Timed Discrete-Event Systems under Partial Observation”, IEEE Trans. Auto. Control, vol.40, no. 3, pp. 558-562, 1995.

[12] L. Yong and W. M. Wonham, “Controllability and Observability in the State-Feedback Control of Discrete-Event Systems”, Proceedings of the 27th Conf. On Decision and Control, pp. 203-208, 1988.

[13] F. Lin and W. M. Wonham, “On Observability of Discrete-Event Systems”, Information Sciences, vol. 44, no.3, pp. 173-198, 1988.

[14] P. Kozak and W. M. Wonham, “Fully Decentralized Solutions of Supervisory Control Problems”, IEEE Trans. Auto. Control, vol.40, no. 12, pp. 2094-2097, 1995.

[15] K. Rudie and W. M. Wonham, “ Think Globally, Act Locally: Decentralized Supervisory Control”, IEEE Trans. Auto. Control, vol.37, no. 11, pp. 1692-1708, 1992.

[16] F. Lin and W. M. Wonham, “Decentralized Control and Coordination of Discrete-EventSystems with Partial Observation”, IEEE Trans. Auto. Control, vol.35, no. 12, pp.1330-1337, 1997.

[17] F. Lin and W. M. Wonham, “Decentralized Supervisory Control of Discrete-Event Systems”, Information Sciences, vol. 44, no. 3, pp. 199-224, 1988.

[18] R. Cieslak, C. Desclaux, A S. Fawaz and P. Varaiya, “Supervisory Control of Discrete-Event Processes with Partial Observations”, IEEE Trans. Auto. Control, vol.33, no. 3, pp. 249-260, 1988

[19] F. Lin, “ Diagnosability of Discrete Event Systems and Its Applications”, Discrete Event Dynamic Systems, vol. 4, no. 2, pp.197-212, 1994.

[20] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D. Teneketzis, “Diagnosability of Discrete-Event Systems”, IEEE Trans. Auto. Control, vo. 40, no. 9, pp. 1555-1575, 1995.

[21] L. E. Pinzon, H. M. Hanisch and M. A. Jafari, “ A Comparative Study of Synthesis Methods for Discrete Event Controllers”, Rutcor Research Report 20-97, RUTCOR, Rutgers Univ., Piscataway, NJ, Sep. 1997.

[22] A. B. Brandin, “The Real-Time Supervisory Control of an Experimental Manufacturing Cell”, IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 1-14, 1996.

RW DESIGN

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

Figure 2. RW Design

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

Figure 3. Real Feedback Loop

�EMBED Equation.3���DESIGN

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

Figure 5. Inverse Design

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

Figure 1. Designed Feedback Loop

�EMBED Equation.3���

�EMBED Equation.3���

 New Supervisor Computation

�EMBED Equation.3���

�EMBED Equation.3���

Yes

No

No

Yes

�EMBED Equation.3���

�EMBED Equation.3���

�EMBED Equation.3���

Figure 4. Recovery Model

Observer

1

2

3

[image: image135.wmf]RW

1

-

[image: image136.wmf]S

[image: image137.wmf]H

[image: image138.wmf]R

[image: image139.wmf]S

[image: image140.wmf]G

[image: image141.wmf]s

[image: image142.wmf]g

[image: image143.wmf]G

G

R

¹

[image: image144.wmf]R

G

R

Ï

[image: image145.wmf]G

R

[image: image146.wmf]S

[image: image147.wmf]g

[image: image148.wmf]s

[image: image149.wmf]s

_962714797.unknown

_962778639.unknown

_969301033.unknown

_981357868.unknown

_981381261.unknown

_981381265.unknown

_981381267.unknown

_981381268.unknown

_981381266.unknown

_981381263.unknown

_981381264.unknown

_981381262.unknown

_981381256.unknown

_981381258.unknown

_981381259.unknown

_981381257.unknown

_981358048.unknown

_981358052.unknown

_981358057.unknown

_981358061.unknown

_981381255.unknown

_981358059.unknown

_981358054.unknown

_981358050.unknown

_981357873.unknown

_981357875.unknown

_981357870.unknown

_981357816.unknown

_981357825.unknown

_981357829.unknown

_981357831.unknown

_981357827.unknown

_981357820.unknown

_981357823.unknown

_981357818.unknown

_969301218.unknown

_981357812.unknown

_981357814.unknown

_981357810.unknown

_969301096.unknown

_969301111.unknown

_969301061.unknown

_964180090.unknown

_964180316.unknown

_964180421.unknown

_964180450.unknown

_964180551.unknown

_964414637.unknown

_964414667.unknown

_964180692.unknown

_964180542.unknown

_964180433.unknown

_964180389.unknown

_964180405.unknown

_964180363.unknown

_964180259.unknown

_964180288.unknown

_964180165.unknown

_964124368.unknown

_964124565.unknown

_964126307.unknown

_964126328.unknown

_964127066.unknown

_964126059.unknown

_964126300.unknown

_964124501.unknown

_962778725.unknown

_962778789.unknown

_962778977.unknown

_962779102.unknown

_962778806.unknown

_962778740.unknown

_962778690.unknown

_962742529.unknown

_962777950.unknown

_962778283.unknown

_962778431.unknown

_962778449.unknown

_962778369.unknown

_962778145.unknown

_962778273.unknown

_962778035.unknown

_962742951.unknown

_962777910.unknown

_962777931.unknown

_962742982.unknown

_962742904.unknown

_962742753.unknown

_962742774.unknown

_962742615.unknown

_962742690.unknown

_962738827.unknown

_962740608.unknown

_962742246.unknown

_962742345.unknown

_962740853.unknown

_962741459.unknown

_962740804.unknown

_962740659.unknown

_962740776.unknown

_962739955.unknown

_962740038.unknown

_962738999.unknown

_962720699.unknown

_962721379.unknown

_962738806.unknown

_962721318.unknown

_962714922.unknown

_962714999.unknown

_962714895.unknown

_962630843.unknown

_962632996.unknown

_962633841.unknown

_962714634.unknown

_962714745.unknown

_962633937.unknown

_962633466.unknown

_962633801.unknown

_962633085.unknown

_962631210.unknown

_962632811.unknown

_962632834.unknown

_962631268.unknown

_962631139.unknown

_962631178.unknown

_962631115.unknown

_962630215.unknown

_962630430.unknown

_962630585.unknown

_962630800.unknown

_962630568.unknown

_962630293.unknown

_962630368.unknown

_962630269.unknown

_962630086.unknown

_962630158.unknown

_962630188.unknown

_962630103.unknown

_962630055.unknown

_962630066.unknown

_962624726.unknown

_962624750.unknown

_962623537.unknown

