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Abstract. We present a model of a production system consisting of two machines and a finite intermediate buffer. The operation of each machine is governed by a homogeneous Markov chain with a finite number of states and a set of corresponding production rates. The model is quite general and can take into account several phenomena such as random supply and demand, machine deterioration, and time-dependent failures. We derive the equilibrium probabilities in, both, matrix-product and geometric forms, which enable the calculation of various performance measures of the system and their sensitivity estimates with respect to discrete and continuous decision variables.





Introduction


	Production networks are usually modeled as networks of queues where items wait before proceeding to subsequent machines for further processing. For these systems the aim of analysis is to compute mean production rates, mean number of items in each buffer, and lead times. These quantities are related by the well-known Little's formula and, therefore, it is sufficient to estimate the first two of them. Networks with infinite queueing space of the Jackson's type and some extensions (see Jackson 1957, Baskett et al. 1975) are analytically tractable by decomposition. Decomposition proceeds by computing the average rate of material flow into the buffers and then studying each buffer in isolation. Two-stage systems with a finite intermediate buffer are also analytically tractable in some cases (see Gershwin and Berman 1981, Bocharov 1985, Mitra 1988, and the references therein).


	For large systems and finite buffer capacities decomposition provides approximate solutions. This approach has been used for queueing systems where processing times have exponential (Takahashi et al. 1980) or phase-type distributions (Bocharov 1987), and unreliable production lines (Choong and Gershwin 1987, De Koster 1988, Glassey and Hong 1993). The accuracy of these approximations depends on the number of parameters used to describe the stochastic flows through each buffer.


	In this paper we develop a continuous-time Markov model of a two-stage production system with several modes of operation. This model is the forerunner of our continuing work for developing a decomposition tool that can take into account several idiosyncrasies of a production network. Specifically, we give emphasis to a particular type of state transitions which occur when the first stage completes an item and becomes starved (lack of supply), or when the last stage completes an item and becomes blocked (lack of space for finished products due to a low demand rate). These transitions are similar to the phenomenon of machine breakdown. However, the latter usually takes place during a production cycle, rather than at the end of it. Transitions of the type described above occur when the system considered is part of a production network. These features enable both operation-dependent and time-dependent failures to be included.


	By using an iterative procedure given by Neuts (1981) and Yeralan and Muth (1987), the equilibrium probabilities are expressed as matrix products. Another approach is to partition the set of unknown probabilities into a sequence of partially overlapping vectors that are related to one another by a constant matrix. The required computer times turn to be independent of the number of unknown probabilities. However this approach is not computationally stable because the powers of the constant matrix grow geometrically with the buffer size and introduce geometrically growing errors in the estimates of the corresponding probabilities. The iterative procedure provides correct steady-state predictions. CPU times are linear in the buffer capacity, but still tolerable even for a system with four-state machines and buffer capacity 50 or larger.





Model


A. Assumptions


	The system consists of two stages M1 and M2 connected by a buffer of finite capacity. There is a source of raw parts before M1 and an output buffer for finished items downstream of M2. The system can accommodate at most N items, of which one is being processed by M2, N-2 are stored in the buffer, and the last is located at M�1 waiting to enter the buffer. In this case M1 is idle due to blockage. The dual situation is that of M2 being starved while M1 is processing one item and the buffer is empty. 
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Figure 1. A two-stage system.





	To each stage we associate a Markov process defined on a finite state space. We assume that the two processes are independent of each other. A state represents a specific mode of operation in which the processing times are random variables drawn from an exponential distribution with known rate. States are classified as up or down according to whether the corresponding processing rates are positive or zero, respectively.


	Down states are further classified as operation-dependent or time-dependent. The first class contains the down states that result from machine deterioration. Therefore M1 (M2) cannot enter in any of them if it is blocked (starved). Time-dependent down states are allowed even when the machine is idle; they are used to represent some random external factors affecting the supply of raw parts or the demand of finished products.


	Consider, for example, the case in which M1 and M2 are two machines of a production network, rather than isolated stages. When M1 completes the last raw part of the input buffer, it becomes starved awaiting a new delivery. This happens if the rate at which raw parts enter the input buffer is smaller than the production rate of M1. If, in addition, the intermediate buffer is full at the time of completion of that part, then M1 will become blocked and starved. One might argue that the effects of blockage and starvation cannot be realized simultaneously, i.e., at any time a machine may be either starved or blocked but not both. However, we can think of M1's starvation as a time-dependent down state (such as a power stoppage) that will be eliminated when a new raw part arrives, regardless of whether the machine is blocked or not. In an analogous manner we treat blockages of M2, occurring when the demand rate is low and the buffer of finished products fills up. Starvation of M1 and blockage of M2 can occur only upon completion of an item, in contrast to standard time-dependent down states which are always accessible. However, the duration of these states is independent of the operation of the system.


B. Transition Matrices


	Let i and j be two states of a machine. The model uses the following information


Ii =	0, if state i cannot be reached when the machine is idle (M1 blocked, M2 starved), 


	1, otherwise.


IEi =	0, if a transition from i to another state is not allowed when the machine is idle,


	1, otherwise.


pij = 	mean rate of transition from state i to j without producing any item.


eij = 	inverse of the mean-time-to-complete an item and immediately switch from state i to j.


These quantities are assumed to be known from observations of the system and constitute the input of the model.


	For example, if i denotes an up state of M1 and the actual production rate of the machine in that state is (i parts per time unit then


eii =	(i  Pr{there are raw parts in the input buffer},


eik =	(i  Pr{the input buffer is empty and there is one item processed by M1},


where k is the down state corresponding to the lack of supply. All other transitions are determined by pij, where j can be another mode of operation or a down state of M1. In a dual fashion if i is a down state of M1 then eij = 0, for all j, and pik is the rate of transition to the up state k (pik is a repair rate), or the transition rate to another down state k. The latter corresponds to the case when M1, being an intermediate machine of a large production system, is starved and the machine that feeds into M1 breaks down. Such events have not been taken into account in the relevant literature although they are necessary for decomposing larger systems into interacting two-stage blocks. In an analogous manner we can write the transition rates for M2.


	Let p(n,i,r) be the equilibrium probability that there are n items in the system, n=0,1,...,N, and the machines M1 and M2 are in states i and r respectively. The performance measures of the system are 


		mean throughput rate = � EMBED Equation.2  ���, 					 (1a)


where (r=� EMBED Equation.2  ��� is the total processing rate of M2 in state r, and


		mean buffer level=� EMBED Equation.2  ���.		 (1b)


If M1 is not blocked and there are n items in the system, 0(n(N, then the buffer carries (n-1) items and M2 is processing one more; if M1 has a blocked part, then there are (N-2) items in the buffer and one in M2.


 The equilibrium probabilities can be computed by solving the Chapman-Kolmogorov equations,


	[total rate out of (n,i,r)] p(n,i,r) 


=� EMBED Equation.2  ���		(2a)


subject to the normalization equation 


� EMBED Equation.2  ���=1.


Note that for n= 0 and n=N and a combination (i,r) of unreachable machine states, (2a) is of the form


1 p(n,i,r)=0.						(2b)


	The model computes the transition rates automatically by using the parameters eij, pij, Ii and IEi. We consider the following cases:


(i) Boundary states. If n=0, either M1 will produce one item, or one of Mm, m=1,2, will to another state without producing. Thus


 � EMBED Equation.2  ���


Furthermore, if Ir is the binary value indicating whether state r of M2 is allowed when the machine is starved and IEr indicates whether a transition from r is permitted, then


 � EMBED Equation.2  ���=


=� EMBED Equation.2  ���


where the last two entries in the bracket represent the total rate out of (0,i,r), i.e. the term of the left side of Eqs. (1a,b). In a dual fashion, the model computes the transition rates from (N,i,r) to (N-1,j,q) and (N,j,q) by checking whether the states i and j of M1 are allowed when n=N and the corresponding transition is permitted. 


(ii) Internal states. For 0(n(N we have


	[rate from (n,i,r) to (m,j,q), m(n]=� EMBED Equation.2  ���


and


[rate from (n,i,r) to (n,j,q)]� EMBED Equation.2  ���


where the last entry in the bracket is the total rate out of (n,i,r), i.e. the left side of Eqs. (2a,b).


	Next we write the Chapman-Kolmogorov equations in a matrix form. We begin by grouping the pairs (i,r) as follows:


	a: vector of pairs such that M1 is up and M2 up


	b: vector of pairs such that M1 is down and M2 up


	c: vector of pairs such that M1 is up and M2 down


	d: vector of pairs such that M1 is down and M2 down


Transitions from a state (n,i,r) to states n-1, n(0, are enabled only when M2 is up, i.e., in a type-a or a type-b state, while transitions from a state (n,i,r) to states n+1, n(N, are enabled only when M1 is up, i.e. in a type-a or a type-c state. The column-vectors of equilibrium probabilities are Pa(n), Pb(n), Pc(n), Pd(n). The Chapman-Kolmogorov equations can be partitioned into a set of internal equations,


	AaaPa(n)= BaaPa(n-1) + AbaPb(n) + AcaPc(n)+ CaaPa(n+1)


	AbbPb(n)= BabPa(n-1) + AabPa(n) + AdbPd(n)+ CbbPb(n+1)


	AccPc(n) = BccPc(n-1) + AacPc(n) + AdcPd(n)+ CacPa(n+1)


	AddPd(n)= BcdPc(n-1) + AbdPb(n) + AcdPc(n)+ CbdPb(n+1),  1(n(N-1,		(3)


and two sets of boundary equations


	A'aaPa(0)= AbaPb(0) + A'caPc(0)+ CaaPa(1)


	A'bbPb(0)= AabPa(0) + A'dbPd(0)+ CbbPb(1)


	A'ccPc(0) = A'acPc(0) + A'dcPd(0)+ CacPa(1)


	A'ddPd(0)= A'bdPb(0) + A'cdPc(0)+ CbdPb(1),						(4)


and


	A"aaPa(N)= BaaPa(N-1) + A"baPb(N) + AcaPc(N)


	A"bbPb(N)= B"abPa(N-1) + A"abPa(N) + A"dbPd(N)


	A"ccPc(N) = BccPc(N-1) + AacPc(N) + A"dcPd(N)


	A"ddPd(N)= B"cdPc(N-1) + A"bdPb(N) + A"cdPc(N).					(5)


	In the sequel, all matrices introduced above will be referred to as transition matrices. A generic element (i,j) of a transition matrix denotes the rate of transition from a pair j of states to a pair i of states. Hence the reader who is familiar with the relevant literature should observe that the roles of rows and columns are interchanged here. A diagonal element of a matrix Axx, x=a,b,c,d, is the transition rate out of a pair of states and a nondiagonal element of that matrix is the negative value of the rate into a pair of states from another pair of states of x. The other matrices Ayx correspond to state transitions from a type-y state to a type-x state, whereupon no item is produced. Finally, Byx (Cyx) correspond to transitions right after M1 (M2) produces an item. Primed matrices correspond to the boundary equations, i.e. for n({0, N}.


	From the above equations we eliminate Pd(n). Hence, some of the transition matrices involved in the remaining equations are modified. To avoid additional notation, we write the resulting system of equations as


	AaaPa(n)= BaaPa(n-1) + AbaPb(n) + AcaPc(n)+ CaaPa(n+1)


	AbbPb(n)= BabPa(n-1) + BcbPc(n-1) + AabPa(n) + CbbPb(n+1)


	AccPc(n)=BccPc(n-1)+AacPc(n) + CacPa(n+1)+CbcPb(n+1), 1(n(N-1,	(6)





	A'aaPa(0)= AbaPb(0) + A'caPc(0)+ CaaPa(1)


	A'bbPb(0)= AabPa(0) + A'cbPc(0)+ CbbPb(1)


	A'ccPc(0) = A'acPc(0) + A'bcPb(0)+ CacPa(1) + CbcPb(1),				(7)





	A"aaPa(N)= BaaPa(N-1) + A"baPb(N) + AcaPc(N)


	A"bbPb(N)= B"abPa(N-1) + B"cbPc(N-1) +  A"abPa(N) + A"cbPc(N)


	A"ccPc(N) = BccPc(N-1) + AacPc(N) + A"bcPb(N),					(8)


where some of the transition matrices are different from their homonyms in Eqs. (3)-(5). For example, eliminating Pd(n) from Eqs. (1) yields


	Pd(n)=Add-1[BcdPc(n-1) + AbdPb(n) + AcdPc(n)+ CbdPb(n+1)]


and the matrix Abb that appears in Eqs. (6) is


	Abb:=Abb-Add-1Abd.


In the next section we describe two methods for solving Eqs. (6)-(8).





Equilibrium Probabilities


A. Product Form


	The following method can be found in Neuts (1981) and Yeralan and Muth (1987). Let P(n) denote the vector [Pa(n) Pb(n) Pc(n)]T, n=0, 1, ..., N. By arranging the system of Eqs. (6)-(8) we obtain the Chapman-Kolmogorov equations in the following compact form:


	A" P(N)= B" P(N-1)


	A P(n) =B P(n-1) + C P(n+1), n=N-1, ..., 1


	A' P(0) = C' P(1) ,										(9)


where the relationship of the above matrices and those of Eqs. (6)-(8) is obvious. The first two sets of equations of  (9) imply the recursion


	P(n)=Gn P(n-1)= Gn G�n-1(G1 P(0) ,							(10a) 


where


	GN = [Α"]-1 B"


	Gn = [A - C Gn+1]-1B, n=N-1, N-2, ..., 1, 							(10b)


and the third set of equations yields


	[A' - B'G1] P(0) = 0. 										(11)


	Each stage of recursion (10a) requires storing the matrix product [G�n-1(G1] and the new matrix computed from (10b). Since the system (9) contains one redundant equation, the matrix [A' - B'G1] is singular. P(0) is found after replacing the first equation of (11) with the normalization equation, expressed in terms of P(0). The coefficients of P(0) in the normalization equation are accumulated at each stage of recursion (10a). Finally, solving Eqs. (3)-(5) for Pd(n) gives expressions of the form


	Pd(N)=D"0 P(N-1) + D"1 P(N)


	Pd(n)=D0 P(n-1) + D1 P(n) + D2 P(n+1)


	Pd(0)= D'1 P(0) + D'2 P(1),									(12)


which are also evaluated recursively. All the above computations are presented in the next section.


B. Geometric Form


	We now derive the matrix geometric solutions to Eqs. (3)-(5). We shall focus only on the main points of the approach rather than presenting all the relevant algebra in detail. By defining Q(n)=[Pa(n-1) Pc(n-1) Pa(n) Pb(n)]T, n=1,...,N, Eqs. (6) can be written as follows:


	Q(n)=H Q(n-1)=Hn-1 Q(1) ,  2(n(N,							(13a)


where


	� EMBED Equation.2  ���,			(13b)


I is the identity matrix and 0's are matrices with zero entries, all of appropriate dimensions. The first row of H corresponds to the identity Pa(n)=I Pa(n). Next we eliminate Pb(0) and Pc(N) from Eqs. (7), (8) and obtain a system of equations of the form


	� EMBED Equation.2  ���								(14a)


	� EMBED Equation.2  ���.							(14b)


	Finally, we set up the matrix Hac by taking the first two rows of HN-1 and matrix Ηab from last two rows of HN-1. Now from Eqs. (14b) we obtain


	� EMBED Equation.2  ���


and from (14a)


	� EMBED Equation.2  ���.


The above yield the following set of equations


	� EMBED Equation.2  ���.								(15)


By replacing the first equation of (15) with the normalization equation, expressed in terms of  [Pa(1) Pb(1)]T, we can calculate the equilibrium probabilities. Again we must solve  Eqs. (3)-(5) to express Pd(n) in terms of Q(n) or, equivalently, in terms of Hn�1 Q(1).


	A computer code has been developed that calculates HN-1, from which we obtain the matrices Hac and Hab of Eq. (15), and [I+H+...+HN-1], of the normalization equation, by applying the Cayley-Hamilton theorem. The matrix [0H+...+(n�1)Hn+ ...+(N-1)HN-1], needed for estimating the mean buffer level, is computed similarly.


C. Remarks


	Carroll et al. (1982), Marie and Pellaumail (1983), Bocharov(1985) and several others have studied multistate queueing systems. However, in all cases it is assumed that the service times of two consecutive parts are independent of each other. Phase-type and Coxian service distributions fall into this category. This assumption is convenient for deriving the equilibrium probabilities, but it is not realistic in our case, since a machine may produce several parts before it switches to another state.


	The computer times required to obtain product-form solutions are linear in N. In some special cases, however, the matrices Gn in Eq. (10a) turn out to be constant and their eigenvalues are inside the unit disk (see Evans 1967, Neuts 1981, Yeralan and Muth 1987, and the references therein). Then the equilibrium probabilities satisfy the matrix-geometric property and, by virtue of the Cayley-Hamilton theorem, the computational requirements are independent of N. Yeralan and Muth (1987) have found two sufficient conditions that permit the direct derivation of geometric-form solutions. It should be noted that these conditions hold for systems with unreliable machines (two-state systems) and phase-type or Coxian distributions of processing times and, therefore, most of the results reported in the queueing literature can reproduced at minimum effort.


	The second approach provides matrix-geometric solutions in a direct manner. Unfortunately, some eigenvalues of the matrix factor H are greater than or, at best, equal to one, as one can verify by inspection of (13b). As a result, the entries of [I+H+...+HN-1] in the normalization equation grow geometrically with N and, because computers have a finite-wordlength limitation, the solutions become unstable.


	A third approach for attacking the problem is by applying the theory of matrix polynomials (see Gantmacher 1959, Ch. VI, for an introduction and Gohberg et al. for an extensive presentation of the theory). This theory provides a comprehensive treatment of matrix difference equations with constant coefficients of which Eqs. (9) are a special case. Consider the general difference equation 


	AkP(n+k) + ...+ A1P(n+1)+A0P(n) =F(n)


where Ai are square matrices, i=0,1,...,k and F(n) are known vectors, n(0. We define the square matrix polynomial


	� EMBED Equation.2  ���.


Let {(j , j=1,..., p} be the set of distinct roots of the determinant of L((), i.e. the set of eigenvalues of L((). To each eigenvalue (j we associate a Jordan pair (X((j),J((j)), where X((j) is a row vector composed of the right eigenvectors of L(() corresponding to (j and J((j) is a diagonal matrix of Jordan blocks corresponding to these eigenvectors. These quantities determine the finite Jordan pair (XF,JF) of the matrix polynomial L((), where XF is the row vector composed of the right eigenvectors X((j) and JF is the diagonal matrix with the Jordan blocks J((j), j=1,...,p. The finite Jordan pair represents the right spectral data of L((). In a dual fashion we can define the Jordan pair (ZF,JF) that represents the left spectral data. Finally define the infinite Jordan pair (X(,J() of the L(() as the  Jordan pair of the matrix polynomial (k L((-1) corresponding to (=0, if this point is an eigenvalue of (k L((-1). Assume that J(( = 0 for some positive integer (. Then the general solution of the difference equation is given by the formulas (Theorem 8.3 in Gohberg et al.)


	P(0)=XF x � EMBED Equation.2  ���


	P(n)=XFTFn  x � EMBED Equation.2  ���


where x is an arbitrary vector and ZF, Z( are the left spectral data of L(() and (k L((-1), respectively.


	The above result is quite general. The solution to the Chapman-Kolmogorov equations has a geometric-sum form that can be easily derived if the spectral information about L(() is available. From several numerical experiments, however, it turns out that even for two-state systems the coefficients of the characteristic polynomial of L((), namely, det[L(()], cannot be estimated accurately. This is so because these coefficients are computed by fitting a polynomial of proper degree into a number of tabulated points � EMBED Equation.2  ��� to obtain a Vandermonde-type system of equations, which are quite ill-conditioned. One way to get around this problem could be using symbolic computations, and this is the subject of future work.


	In view of the above, it seems that the first method is the only one that can be applied directly to obtain the equilibrium probabilities. From several numerical experiments with systems involving two- and four-state production stages and buffer capacities ranging from 2 to 50, it turns out that this method produces accurate estimates of performance measures while the corresponding CPU times are less than one second on a 80486 based machine.





Sensitivity Analysis


	Sensitivity analysis plays a fundamental role in optimization, because it determines the effects of a (small) change in a decision parameter on system performance. Clearly, the production system herein has a discrete parameter (buffer capacity) and several continuous parameters (transition rates), which affect its performance and cost of operation. In this section, we show how sensitivity analysis is carried out as one goes along (10a) to compute the equilibrium probabilities for nominal parameter values. 


	The effects of increasing the buffer capacity by one can be estimated by performing an additional evaluation of (10a), i.e. at stage n=0. We now derive formulas for the sensitivity of a performance measure with respect to a transition rate, say t. The idea is to express the derivative of the performance measure in terms of Pa(0), Pb(0), Pc(0), and Pd(0).


	We shall only consider the mean buffer level. The relevant algebra for the mean throughput rate is similar and will be omitted. First, we calculate the derivatives of the equilibrium probabilities P(n)=[Pa(n) Pb(n) Pc(n)]T and Pd(n). This can be accomplished recursively. For brevity, we sometimes omit the calculations for the boundary states and present only the analysis of internal equations. From Eqs. (10a,b), using matrix algebra, we obtain


	� EMBED Equation.2  ���=� EMBED Equation.2  ��� , 1(n(N-1


where


	� EMBED Equation.2  ���	= � EMBED Equation.2  ���


		=� EMBED Equation.2  ���


and


	� EMBED Equation.2  ���.


Actually, its is the derivative of Gn that we need, rather than the derivative of P(n).


	Next we derive formulas for the sum of probabilities and the average buffer level. In view of (10b), define


	Sn : = [GN GN-1...Gn] + [GN-1...Gn] + ... +Gn,


	Tn : =(N-2) [GN GN-1...Gn] + (N-2) [GN-1...Gn] + ... + (n-1)Gn,


The following recursive expressions can be easily verified


	Sn=[Sn+1+I]Gn,


	Tn=[Tn+1+(n-1)I]Gn.


Let also e denote row-vectors of appropriate dimensions whose elements are 1. Then


	� EMBED Equation.2  ���=e[P(N) + ... + P(0)] = e[S1+I] P(0),					(16a)


and


� EMBED Equation.2  ���=e[(N-2)P(N) +... +(n-1) P(n) + ... + 0P(1)] = eT1P(0).	(16b)


In a similar manner we derive expressions involving sums of Pd(n). In view of Eqs. (12) we define


	SdN : = D"0 + D"1GN ,   Sdn: = Sdn+1Gn+ D0 + D1Gn + D2Gn+1Gn , n(0,


	TdN : = (N-2)[D"0 + D"1GN ],   Tdn: = Tdn+1Gn + (n-1)[D0 + D1Gn + D2Gn+1Gn] , n(0.


Then


	� EMBED Equation.2  ���=e[Pd(N) + ... + Pd(0)] = e[Sd1+ D'2G1+D'1] P(0)				(16c)


and


 � EMBED Equation.2  ���=e[(N-2)Pd(N) +... +(n-1)Pd(n) + ... + 0Pd(1)]=eTd1P(0)	(16d)


	The above quantities are involved in the normalization equation and the mean buffer level. Their derivatives are


	� EMBED Equation.2  ���,						(17a)


where � EMBED Equation.2  ���;


	� EMBED Equation.2  ���,							(17b)


where � EMBED Equation.2  ���;


� EMBED Equation.2  ���,	(17c)


where dSdn and  [dSdn/dt], n=N,...,1,0 are calculated iteratively; and


	� EMBED Equation.2  ���,							(17d)


where dTdn and [dΤdn/dt], n=N,...,1,0 are calculated iteratively.


	By adding Eqs. (17a,b) we obtain the derivative of the normalization equation. The resulting expressions are linear in P(0) and [dP(0)/dt]. Hence, there exist two row-vectors g0 and g1, such that the normalization equation can be written as


	� EMBED Equation.2  ���.


The derivative of P(0) is computed at the final stage, i.e. n=0, by taking derivatives in both sides of Eq. (11)


	� EMBED Equation.2  ���,					 				(18)


where � EMBED Equation.2  ���. We then replace the first row of G0 with g0 and the top element of the vector -[dG0/dt]P(0) with -g1P(0) and, finally, solve the modified Eq. (18) for [dP(0)/dt]. The derivative of the mean buffer level is computed by adding Eqs. (17c,d). The derivative of the mean throughput rate can be derived in a similar manner.





Conclusion


	We have proposed a Markovian model of a two-stage production line, which takes into account a host of random phenomena, such as several failure types, changes in production rates, shortage of raw parts, and blockage of the second stage. In addition, we derive the sensitivity formulas of performance measures with respect to all parameters of the system (buffer capacity, production rates, etc.). These features provide an effective means of modeling and optimization of more general production networks by decomposition, which are the subjects of ongoing research.
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